Solveeit Logo

Question

Question: If $\int \frac{dx}{x^3(x^{12}+1)^{\frac{5}{6}}} = k_1 \frac{(1+x^{12})^{\frac{1}{6}}}{x^{k_2}}$, whe...

If dxx3(x12+1)56=k1(1+x12)16xk2\int \frac{dx}{x^3(x^{12}+1)^{\frac{5}{6}}} = k_1 \frac{(1+x^{12})^{\frac{1}{6}}}{x^{k_2}}, where k1,k2Rk_1, k_2 \in R then the product k1k2=k_1 k_2 =

A

-2

B

-1

C

3

D

-12

Answer

-1

Explanation

Solution

To evaluate the integral dxx3(x12+1)56\int \frac{dx}{x^3(x^{12}+1)^{\frac{5}{6}}}, we follow these steps:

  1. Rewrite the integrand: Factor out x12x^{12} from the term (x12+1)56(x^{12}+1)^{\frac{5}{6}} in the denominator. (x12+1)56=(x12(1+1x12))56=(x12)56(1+x12)56=x10(1+x12)56(x^{12}+1)^{\frac{5}{6}} = \left(x^{12}\left(1+\frac{1}{x^{12}}\right)\right)^{\frac{5}{6}} = (x^{12})^{\frac{5}{6}} (1+x^{-12})^{\frac{5}{6}} = x^{10} (1+x^{-12})^{\frac{5}{6}} Now substitute this back into the integral: dxx3x10(1+x12)56=dxx13(1+x12)56\int \frac{dx}{x^3 \cdot x^{10} (1+x^{-12})^{\frac{5}{6}}} = \int \frac{dx}{x^{13} (1+x^{-12})^{\frac{5}{6}}} This can be written as: x13(1+x12)56dx\int x^{-13} (1+x^{-12})^{-\frac{5}{6}} dx

  2. Perform substitution: Let u=1+x12u = 1+x^{-12}. Differentiate uu with respect to xx: dudx=12x13\frac{du}{dx} = -12x^{-13} So, du=12x13dxdu = -12x^{-13} dx, which implies x13dx=112dux^{-13} dx = -\frac{1}{12} du.

  3. Integrate with respect to uu: Substitute uu and dudu into the integral: u56(112)du=112u56du\int u^{-\frac{5}{6}} \left(-\frac{1}{12}\right) du = -\frac{1}{12} \int u^{-\frac{5}{6}} du Now integrate u56u^{-\frac{5}{6}}: u56du=u56+156+1+C=u1616+C=6u16+C\int u^{-\frac{5}{6}} du = \frac{u^{-\frac{5}{6}+1}}{-\frac{5}{6}+1} + C = \frac{u^{\frac{1}{6}}}{\frac{1}{6}} + C = 6u^{\frac{1}{6}} + C Substitute this back into the expression for the integral: 112(6u16)+C=12u16+C-\frac{1}{12} (6u^{\frac{1}{6}}) + C = -\frac{1}{2} u^{\frac{1}{6}} + C

  4. Substitute back to xx: Replace uu with 1+x121+x^{-12}: 12(1+x12)16+C-\frac{1}{2} (1+x^{-12})^{\frac{1}{6}} + C Rewrite (1+x12)16(1+x^{-12})^{\frac{1}{6}} to match the given form: (1+x12)16=(x12+1x12)16=(x12+1)16(x12)16=(x12+1)16x2(1+x^{-12})^{\frac{1}{6}} = \left(\frac{x^{12}+1}{x^{12}}\right)^{\frac{1}{6}} = \frac{(x^{12}+1)^{\frac{1}{6}}}{(x^{12})^{\frac{1}{6}}} = \frac{(x^{12}+1)^{\frac{1}{6}}}{x^2} So the integral becomes: dxx3(x12+1)56=12(x12+1)16x2+C\int \frac{dx}{x^3(x^{12}+1)^{\frac{5}{6}}} = -\frac{1}{2} \frac{(x^{12}+1)^{\frac{1}{6}}}{x^2} + C

  5. Identify k1k_1 and k2k_2: The problem states that the integral is equal to k1(1+x12)16xk2k_1 \frac{(1+x^{12})^{\frac{1}{6}}}{x^{k_2}}. Comparing our result with the given form: k1=12k_1 = -\frac{1}{2} k2=2k_2 = 2

  6. Calculate the product k1k2k_1 k_2: k1k2=(12)×2=1k_1 k_2 = \left(-\frac{1}{2}\right) \times 2 = -1

The final answer is 1\boxed{-1}.

Explanation of the solution: The integral dxx3(x12+1)56\int \frac{dx}{x^3(x^{12}+1)^{\frac{5}{6}}} is solved by first rewriting the denominator as x13(1+x12)56x^{13}(1+x^{-12})^{\frac{5}{6}}. Then, a substitution u=1+x12u = 1+x^{-12} is made, which transforms x13dxx^{-13}dx into 112du-\frac{1}{12}du. The integral becomes 112u56du-\frac{1}{12}\int u^{-\frac{5}{6}}du, which evaluates to 12u16-\frac{1}{2}u^{\frac{1}{6}}. Substituting back u=1+x12u = 1+x^{-12} and simplifying, we get 12(x12+1)16x2-\frac{1}{2}\frac{(x^{12}+1)^{\frac{1}{6}}}{x^2}. Comparing this with the given form k1(1+x12)16xk2k_1 \frac{(1+x^{12})^{\frac{1}{6}}}{x^{k_2}}, we find k1=12k_1 = -\frac{1}{2} and k2=2k_2 = 2. The product k1k2=(12)(2)=1k_1 k_2 = (-\frac{1}{2})(2) = -1.