Question
Question: If $\int \frac{dx}{\sqrt[6]{(x+1)^5(x-3)^7}}=a(\frac{x+1}{x-3})^b+C$, where $C$ is constant of integ...
If ∫6(x+1)5(x−3)7dx=a(x−3x+1)b+C, where C is constant of integration, then the value of 3b−a is

2
Solution
The given integral is I=∫6(x+1)5(x−3)7dx. We can rewrite the integral using fractional exponents: I=∫(x+1)−5/6(x−3)−7/6dx
The problem asks us to express the integral in the form a(x−3x+1)b+C. This suggests a substitution involving the ratio x−3x+1.
Let t=x−3x+1. To find dt, we differentiate t with respect to x using the quotient rule: dt=dxd(x−3x+1)dx=(x−3)2(x−3)(1)−(x+1)(1)dx dt=(x−3)2x−3−x−1dx=(x−3)2−4dx From this, we can express dx in terms of dt: dx=−41(x−3)2dt.
Now, we need to express the integrand (x+1)−5/6(x−3)−7/6 in terms of t. From the substitution t=x−3x+1, we have x+1=t(x−3). Substitute this into the integrand: (x+1)−5/6(x−3)−7/6=(t(x−3))−5/6(x−3)−7/6 =t−5/6(x−3)−5/6(x−3)−7/6 =t−5/6(x−3)−(5/6+7/6) =t−5/6(x−3)−12/6 =t−5/6(x−3)−2 =(x−3)2t−5/6
Now substitute this back into the integral I: I=∫(x−3)2t−5/6(−41(x−3)2dt) The term (x−3)2 cancels out: I=∫−41t−5/6dt I=−41∫t−5/6dt
Now, integrate t−5/6 with respect to t: ∫t−5/6dt=−5/6+1t−5/6+1+C=1/6t1/6+C=6t1/6+C.
Substitute this back into the expression for I: I=−41(6t1/6)+C I=−46t1/6+C I=−23t1/6+C
Finally, substitute back t=x−3x+1: I=−23(x−3x+1)1/6+C.
This result is in the form a(x−3x+1)b+C. By comparing, we find: a=−23 b=61
We need to find the value of 3b−a: 3b−a=3(61)−(−23) 3b−a=63+23 3b−a=21+23 3b−a=21+3 3b−a=24 3b−a=2.
The final answer is 2.
Explanation of the solution: The integral is of the form ∫(x+1)m(x−3)ndx. Given the desired form of the result, we use the substitution t=x−3x+1.
- Calculate dt in terms of dx and (x−3)2: dt=(x−3)2−4dx.
- Express the integrand in terms of t: (x+1)−5/6(x−3)−7/6=t−5/6(x−3)−2.
- Substitute t and dt into the integral: ∫(x−3)2t−5/6(−41(x−3)2dt)=−41∫t−5/6dt.
- Integrate: −41(1/6t1/6)+C=−23t1/6+C.
- Substitute back t=x−3x+1: −23(x−3x+1)1/6+C.
- Compare with a(x−3x+1)b+C to find a=−23 and b=61.
- Calculate 3b−a=3(61)−(−23)=21+23=24=2.