Solveeit Logo

Question

Question: If $\int \frac{dx}{\sqrt[6]{(x+1)^5(x-3)^7}}=a(\frac{x+1}{x-3})^b+C$, where $C$ is constant of integ...

If dx(x+1)5(x3)76=a(x+1x3)b+C\int \frac{dx}{\sqrt[6]{(x+1)^5(x-3)^7}}=a(\frac{x+1}{x-3})^b+C, where CC is constant of integration, then the value of 3ba3b-a is

Answer

2

Explanation

Solution

The given integral is I=dx(x+1)5(x3)76I = \int \frac{dx}{\sqrt[6]{(x+1)^5(x-3)^7}}. We can rewrite the integral using fractional exponents: I=(x+1)5/6(x3)7/6dxI = \int (x+1)^{-5/6} (x-3)^{-7/6} dx

The problem asks us to express the integral in the form a(x+1x3)b+Ca(\frac{x+1}{x-3})^b+C. This suggests a substitution involving the ratio x+1x3\frac{x+1}{x-3}.

Let t=x+1x3t = \frac{x+1}{x-3}. To find dtdt, we differentiate tt with respect to xx using the quotient rule: dt=ddx(x+1x3)dx=(x3)(1)(x+1)(1)(x3)2dxdt = \frac{d}{dx}\left(\frac{x+1}{x-3}\right) dx = \frac{(x-3)(1) - (x+1)(1)}{(x-3)^2} dx dt=x3x1(x3)2dx=4(x3)2dxdt = \frac{x-3-x-1}{(x-3)^2} dx = \frac{-4}{(x-3)^2} dx From this, we can express dxdx in terms of dtdt: dx=14(x3)2dtdx = -\frac{1}{4}(x-3)^2 dt.

Now, we need to express the integrand (x+1)5/6(x3)7/6(x+1)^{-5/6} (x-3)^{-7/6} in terms of tt. From the substitution t=x+1x3t = \frac{x+1}{x-3}, we have x+1=t(x3)x+1 = t(x-3). Substitute this into the integrand: (x+1)5/6(x3)7/6=(t(x3))5/6(x3)7/6(x+1)^{-5/6} (x-3)^{-7/6} = (t(x-3))^{-5/6} (x-3)^{-7/6} =t5/6(x3)5/6(x3)7/6= t^{-5/6} (x-3)^{-5/6} (x-3)^{-7/6} =t5/6(x3)(5/6+7/6)= t^{-5/6} (x-3)^{-(5/6 + 7/6)} =t5/6(x3)12/6= t^{-5/6} (x-3)^{-12/6} =t5/6(x3)2= t^{-5/6} (x-3)^{-2} =t5/6(x3)2= \frac{t^{-5/6}}{(x-3)^2}

Now substitute this back into the integral II: I=t5/6(x3)2(14(x3)2dt)I = \int \frac{t^{-5/6}}{(x-3)^2} \left(-\frac{1}{4}(x-3)^2 dt\right) The term (x3)2(x-3)^2 cancels out: I=14t5/6dtI = \int -\frac{1}{4} t^{-5/6} dt I=14t5/6dtI = -\frac{1}{4} \int t^{-5/6} dt

Now, integrate t5/6t^{-5/6} with respect to tt: t5/6dt=t5/6+15/6+1+C=t1/61/6+C=6t1/6+C\int t^{-5/6} dt = \frac{t^{-5/6+1}}{-5/6+1} + C = \frac{t^{1/6}}{1/6} + C = 6t^{1/6} + C.

Substitute this back into the expression for II: I=14(6t1/6)+CI = -\frac{1}{4} (6t^{1/6}) + C I=64t1/6+CI = -\frac{6}{4} t^{1/6} + C I=32t1/6+CI = -\frac{3}{2} t^{1/6} + C

Finally, substitute back t=x+1x3t = \frac{x+1}{x-3}: I=32(x+1x3)1/6+CI = -\frac{3}{2} \left(\frac{x+1}{x-3}\right)^{1/6} + C.

This result is in the form a(x+1x3)b+Ca(\frac{x+1}{x-3})^b+C. By comparing, we find: a=32a = -\frac{3}{2} b=16b = \frac{1}{6}

We need to find the value of 3ba3b-a: 3ba=3(16)(32)3b-a = 3\left(\frac{1}{6}\right) - \left(-\frac{3}{2}\right) 3ba=36+323b-a = \frac{3}{6} + \frac{3}{2} 3ba=12+323b-a = \frac{1}{2} + \frac{3}{2} 3ba=1+323b-a = \frac{1+3}{2} 3ba=423b-a = \frac{4}{2} 3ba=23b-a = 2.

The final answer is 2\boxed{2}.

Explanation of the solution: The integral is of the form (x+1)m(x3)ndx\int (x+1)^m (x-3)^n dx. Given the desired form of the result, we use the substitution t=x+1x3t = \frac{x+1}{x-3}.

  1. Calculate dtdt in terms of dxdx and (x3)2(x-3)^2: dt=4(x3)2dxdt = \frac{-4}{(x-3)^2} dx.
  2. Express the integrand in terms of tt: (x+1)5/6(x3)7/6=t5/6(x3)2(x+1)^{-5/6}(x-3)^{-7/6} = t^{-5/6}(x-3)^{-2}.
  3. Substitute tt and dtdt into the integral: t5/6(x3)2(14(x3)2dt)=14t5/6dt\int \frac{t^{-5/6}}{(x-3)^2} \left(-\frac{1}{4}(x-3)^2 dt\right) = -\frac{1}{4} \int t^{-5/6} dt.
  4. Integrate: 14(t1/61/6)+C=32t1/6+C-\frac{1}{4} \left(\frac{t^{1/6}}{1/6}\right) + C = -\frac{3}{2} t^{1/6} + C.
  5. Substitute back t=x+1x3t = \frac{x+1}{x-3}: 32(x+1x3)1/6+C-\frac{3}{2} \left(\frac{x+1}{x-3}\right)^{1/6} + C.
  6. Compare with a(x+1x3)b+Ca(\frac{x+1}{x-3})^b+C to find a=32a = -\frac{3}{2} and b=16b = \frac{1}{6}.
  7. Calculate 3ba=3(16)(32)=12+32=42=23b-a = 3(\frac{1}{6}) - (-\frac{3}{2}) = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2.