Question
Question: If $\int \frac{dx}{1+x+x^2+x^3}=\frac{1}{a}\tan^{-1}x + \log \sqrt{|b+x|}-\frac{1}{c}\log \sqrt{1+x^...
If ∫1+x+x2+x3dx=a1tan−1x+log∣b+x∣−c1log1+xd+C, where C is a constant of integration, then a+b+c+d is

7
Solution
To solve the integral ∫1+x+x2+x3dx, we first factorize the denominator:
1+x+x2+x3=(1+x)+x2(1+x)=(1+x)(1+x2).
Now, we decompose the integrand into partial fractions:
(1+x)(1+x2)1=1+xA+1+x2Bx+C
Multiply both sides by (1+x)(1+x2):
1=A(1+x2)+(Bx+C)(1+x)
To find A, set x=−1:
1=A(1+(−1)2)+(B(−1)+C)(1−1)
1=A(2)+0⟹A=21
To find B and C, expand the equation and compare coefficients:
1=A+Ax2+Bx+Bx2+C+Cx
1=(A+B)x2+(B+C)x+(A+C)
Comparing coefficients:
Coefficient of x2: A+B=0⟹21+B=0⟹B=−21
Coefficient of x: B+C=0⟹−21+C=0⟹C=21
Constant term: A+C=1⟹21+21=1⟹1=1 (This confirms our values)
So, the partial fraction decomposition is:
(1+x)(1+x2)1=1+x1/2+1+x2(−1/2)x+1/2=2(1+x)1+2(1+x2)1−x
This can be rewritten as:
2(1+x)1+2(1+x2)1−2(1+x2)x
Now, we integrate each term:
∫1+x+x2+x3dx=∫2(1+x)1dx+∫2(1+x2)1dx−∫2(1+x2)xdx
-
∫2(1+x)1dx=21log∣1+x∣
-
∫2(1+x2)1dx=21tan−1x
-
For ∫−2(1+x2)xdx, let u=1+x2. Then du=2xdx, so xdx=21du.
∫−2(1+x2)1⋅xdx=∫−2u1⋅21du=−41∫u1du=−41log∣u∣=−41log(1+x2) (since 1+x2>0)
Combining these results, the integral is:
21log∣1+x∣+21tan−1x−41log(1+x2)+C
Now, we compare this result with the given form:
a1tan−1x+log∣b+x∣−c1log1+xd+C
Let's rearrange our result to match the given form:
21tan−1x+21log∣1+x∣−41log(1+x2)+C
Comparing term by term:
- For the tan−1x term:
a1tan−1x=21tan−1x⟹a=2.
- For the log∣b+x∣ term:
Our term is 21log∣1+x∣. Using the property klogM=logMk:
21log∣1+x∣=log(∣1+x∣1/2)=log∣1+x∣.
Comparing this with log∣b+x∣, we get b=1.
- For the −c1log1+xd term:
Our term is −41log(1+x2).
Let's rewrite the given form using the property klogM=logMk and M=M1/2:
−c1log1+xd=−c1log(1+xd)1/2=−c1⋅21log(1+xd)=−2c1log(1+xd).
Now, equate this to our term:
−2c1log(1+xd)=−41log(1+x2)
Comparing the coefficients of log:
−2c1=−41⟹2c1=41⟹2c=4⟹c=2.
Comparing the arguments of log:
1+xd=1+x2⟹d=2.
So, we have the values:
a=2
b=1
c=2
d=2
Finally, we need to find a+b+c+d:
a+b+c+d=2+1+2+2=7.