Solveeit Logo

Question

Question: If $\int \frac{dx}{1+x+x^2+x^3}=\frac{1}{a}\tan^{-1}x + \log \sqrt{|b+x|}-\frac{1}{c}\log \sqrt{1+x^...

If dx1+x+x2+x3=1atan1x+logb+x1clog1+xd+C\int \frac{dx}{1+x+x^2+x^3}=\frac{1}{a}\tan^{-1}x + \log \sqrt{|b+x|}-\frac{1}{c}\log \sqrt{1+x^d}+C, where CC is a constant of integration, then a+b+c+da+b+c+d is

Answer

7

Explanation

Solution

To solve the integral dx1+x+x2+x3\int \frac{dx}{1+x+x^2+x^3}, we first factorize the denominator:

1+x+x2+x3=(1+x)+x2(1+x)=(1+x)(1+x2)1+x+x^2+x^3 = (1+x) + x^2(1+x) = (1+x)(1+x^2).

Now, we decompose the integrand into partial fractions:

1(1+x)(1+x2)=A1+x+Bx+C1+x2\frac{1}{(1+x)(1+x^2)} = \frac{A}{1+x} + \frac{Bx+C}{1+x^2}

Multiply both sides by (1+x)(1+x2)(1+x)(1+x^2):

1=A(1+x2)+(Bx+C)(1+x)1 = A(1+x^2) + (Bx+C)(1+x)

To find AA, set x=1x=-1:

1=A(1+(1)2)+(B(1)+C)(11)1 = A(1+(-1)^2) + (B(-1)+C)(1-1)

1=A(2)+0    A=121 = A(2) + 0 \implies A = \frac{1}{2}

To find BB and CC, expand the equation and compare coefficients:

1=A+Ax2+Bx+Bx2+C+Cx1 = A+Ax^2 + Bx+Bx^2 + C+Cx

1=(A+B)x2+(B+C)x+(A+C)1 = (A+B)x^2 + (B+C)x + (A+C)

Comparing coefficients:

Coefficient of x2x^2: A+B=0    12+B=0    B=12A+B = 0 \implies \frac{1}{2}+B = 0 \implies B = -\frac{1}{2}

Coefficient of xx: B+C=0    12+C=0    C=12B+C = 0 \implies -\frac{1}{2}+C = 0 \implies C = \frac{1}{2}

Constant term: A+C=1    12+12=1    1=1A+C = 1 \implies \frac{1}{2}+\frac{1}{2} = 1 \implies 1=1 (This confirms our values)

So, the partial fraction decomposition is:

1(1+x)(1+x2)=1/21+x+(1/2)x+1/21+x2=12(1+x)+1x2(1+x2)\frac{1}{(1+x)(1+x^2)} = \frac{1/2}{1+x} + \frac{(-1/2)x+1/2}{1+x^2} = \frac{1}{2(1+x)} + \frac{1-x}{2(1+x^2)}

This can be rewritten as:

12(1+x)+12(1+x2)x2(1+x2)\frac{1}{2(1+x)} + \frac{1}{2(1+x^2)} - \frac{x}{2(1+x^2)}

Now, we integrate each term:

dx1+x+x2+x3=12(1+x)dx+12(1+x2)dxx2(1+x2)dx\int \frac{dx}{1+x+x^2+x^3} = \int \frac{1}{2(1+x)}dx + \int \frac{1}{2(1+x^2)}dx - \int \frac{x}{2(1+x^2)}dx

  1. 12(1+x)dx=12log1+x\int \frac{1}{2(1+x)}dx = \frac{1}{2}\log|1+x|

  2. 12(1+x2)dx=12tan1x\int \frac{1}{2(1+x^2)}dx = \frac{1}{2}\tan^{-1}x

  3. For x2(1+x2)dx\int -\frac{x}{2(1+x^2)}dx, let u=1+x2u = 1+x^2. Then du=2xdxdu = 2xdx, so xdx=12duxdx = \frac{1}{2}du.

12(1+x2)xdx=12u12du=141udu=14logu=14log(1+x2)\int -\frac{1}{2(1+x^2)} \cdot xdx = \int -\frac{1}{2u} \cdot \frac{1}{2}du = -\frac{1}{4}\int \frac{1}{u}du = -\frac{1}{4}\log|u| = -\frac{1}{4}\log(1+x^2) (since 1+x2>01+x^2 > 0)

Combining these results, the integral is:

12log1+x+12tan1x14log(1+x2)+C\frac{1}{2}\log|1+x| + \frac{1}{2}\tan^{-1}x - \frac{1}{4}\log(1+x^2) + C

Now, we compare this result with the given form:

1atan1x+logb+x1clog1+xd+C\frac{1}{a}\tan^{-1}x + \log \sqrt{|b+x|}-\frac{1}{c}\log \sqrt{1+x^d}+C

Let's rearrange our result to match the given form:

12tan1x+12log1+x14log(1+x2)+C\frac{1}{2}\tan^{-1}x + \frac{1}{2}\log|1+x| - \frac{1}{4}\log(1+x^2) + C

Comparing term by term:

  1. For the tan1x\tan^{-1}x term:

1atan1x=12tan1x    a=2\frac{1}{a}\tan^{-1}x = \frac{1}{2}\tan^{-1}x \implies a=2.

  1. For the logb+x\log \sqrt{|b+x|} term:

Our term is 12log1+x\frac{1}{2}\log|1+x|. Using the property klogM=logMkk\log M = \log M^k:

12log1+x=log(1+x1/2)=log1+x\frac{1}{2}\log|1+x| = \log(|1+x|^{1/2}) = \log \sqrt{|1+x|}.

Comparing this with logb+x\log \sqrt{|b+x|}, we get b=1b=1.

  1. For the 1clog1+xd-\frac{1}{c}\log \sqrt{1+x^d} term:

Our term is 14log(1+x2)-\frac{1}{4}\log(1+x^2).

Let's rewrite the given form using the property klogM=logMkk\log M = \log M^k and M=M1/2\sqrt{M} = M^{1/2}:

1clog1+xd=1clog(1+xd)1/2=1c12log(1+xd)=12clog(1+xd)-\frac{1}{c}\log \sqrt{1+x^d} = -\frac{1}{c}\log (1+x^d)^{1/2} = -\frac{1}{c} \cdot \frac{1}{2} \log (1+x^d) = -\frac{1}{2c}\log(1+x^d).

Now, equate this to our term:

12clog(1+xd)=14log(1+x2)-\frac{1}{2c}\log(1+x^d) = -\frac{1}{4}\log(1+x^2)

Comparing the coefficients of log\log:

12c=14    12c=14    2c=4    c=2-\frac{1}{2c} = -\frac{1}{4} \implies \frac{1}{2c} = \frac{1}{4} \implies 2c = 4 \implies c=2.

Comparing the arguments of log\log:

1+xd=1+x2    d=21+x^d = 1+x^2 \implies d=2.

So, we have the values:

a=2a=2

b=1b=1

c=2c=2

d=2d=2

Finally, we need to find a+b+c+da+b+c+d:

a+b+c+d=2+1+2+2=7a+b+c+d = 2+1+2+2 = 7.