Solveeit Logo

Question

Question: If, $\int \frac{d\theta}{cos^2\theta(tan2\theta+sec2\theta)} = \lambda tan\theta + 2log_e|f(\theta)|...

If, dθcos2θ(tan2θ+sec2θ)=λtanθ+2logef(θ)+c\int \frac{d\theta}{cos^2\theta(tan2\theta+sec2\theta)} = \lambda tan\theta + 2log_e|f(\theta)| + c (where c is a constant of integration), then the ordered pair (λ,f(θ))(\lambda, |f(\theta)|) is equal to

A

(1, |1 + tan θ\theta|)

B

(1, |1 - tan θ\theta|)

C

(-1, |1 + tan θ\theta|)

D

(-1, |1 - tan θ\theta|)

Answer

Option C (-1, |1+tanθ|)

Explanation

Solution

To solve the given integral, we'll follow these steps:

  1. Substitution:

    Let u=tanθu = \tan\theta. Then, du=sec2θdθ=dθcos2θdu = \sec^2\theta \, d\theta = \frac{d\theta}{\cos^2\theta}.
    The integral becomes:

    dutan2θ+sec2θ\int \frac{du}{\tan2\theta + \sec2\theta}

  2. Express tan2θ\tan2\theta and sec2θ\sec2\theta in terms of uu:

    tan2θ=2tanθ1tan2θ=2u1u2\tan2\theta = \frac{2\tan\theta}{1-\tan^2\theta} = \frac{2u}{1-u^2}

    sec2θ=1cos2θ=1+u21u2\sec2\theta = \frac{1}{\cos2\theta} = \frac{1+u^2}{1-u^2}

    Then,

    tan2θ+sec2θ=2u1u2+1+u21u2=2u+1+u21u2\tan2\theta + \sec2\theta = \frac{2u}{1-u^2} + \frac{1+u^2}{1-u^2} = \frac{2u+1+u^2}{1-u^2}

  3. Substitute back into the integral:

    du2u+1+u21u2=1u2u2+2u+1du\int \frac{du}{\frac{2u+1+u^2}{1-u^2}} = \int \frac{1-u^2}{u^2+2u+1} \, du

    Notice that u2+2u+1=(u+1)2u^2+2u+1 = (u+1)^2 and 1u2=(1u)(1+u)1-u^2 = (1-u)(1+u). Thus,

    (1u)(1+u)(u+1)2du=1uu+1du\int \frac{(1-u)(1+u)}{(u+1)^2} \, du = \int \frac{1-u}{u+1} \, du

  4. Simplify and integrate:

    Write:

    1u1+u=21+u1\frac{1-u}{1+u} = \frac{2}{1+u} - 1

    Therefore,

    1u1+udu=[21+u1]du=211+udu1du\int \frac{1-u}{1+u} \, du = \int \left[ \frac{2}{1+u} - 1 \right] du = 2\int \frac{1}{1+u} \, du - \int 1 \, du

    1u1+udu=2ln1+uu+C\int \frac{1-u}{1+u} \, du = 2\ln|1+u| - u + C

  5. Substitute back u=tanθu = \tan\theta:

    tanθ+2ln1+tanθ+C-\tan\theta + 2\ln|1+\tan\theta| + C

Comparing with the given form λtanθ+2lnf(θ)+C\lambda \tan\theta + 2\ln|f(\theta)| + C, we find:

λ=1,f(θ)=1+tanθ\lambda = -1, \quad f(\theta) = 1+\tan\theta

Thus, the ordered pair (λ,f(θ))(\lambda, |f(\theta)|) is (1,1+tanθ)(-1, |1+\tan\theta|).