Question
Question: If $\int \frac{\cos 2x \sin 4x}{\cos^4 x(1+\cos^2 2x)}dx = 2\log_e (1 + \cos 2x)-\log_e (1 + \cos^2 ...
If ∫cos4x(1+cos22x)cos2xsin4xdx=2loge(1+cos2x)−loge(1+cos22x)+f(x)+c, where c is a constant of integration, then f(x) is

A
sec2x
B
tan x
C
cosec2x
D
cot x
Answer
sec2x
Explanation
Solution
To solve this problem, we need to find the function f(x) given the integral expression. The key steps involve simplifying the integrand, using trigonometric identities, applying substitution, and decomposing the rational function into partial fractions.
-
Simplify the Integrand:
- Use the identity sin4x=2sin2xcos2x.
- Use the identity cos2x=21+cos2x, which implies cos4x=4(1+cos2x)2.
- Substitute these into the integrand to get: (1+cos2x)2(1+cos22x)8sin2xcos22x
-
Apply Substitution:
- Let u=cos2x, so du=−2sin2xdx. This transforms the integral.
-
Partial Fraction Decomposition:
- Decompose the rational function (1+u)2(1+u2)u2 into partial fractions: (1+u)2(1+u2)u2=1+uA+(1+u)2B+1+u2Cu+D
- Solve for the constants A,B,C,D.
-
Integration:
- Integrate each term of the partial fraction decomposition with respect to u.
-
Substitute Back:
- Substitute back u=cos2x to express the result in terms of x.
-
Identify f(x):
- Compare the obtained result with the given form 2loge(1+cos2x)−loge(1+cos22x)+f(x)+c to identify f(x).
- Simplify f(x) using the identity 1+cos2x=2cos2x.
Following these steps, we find that f(x)=sec2x.