Solveeit Logo

Question

Question: If $\int \frac{\cos 2x \sin 4x}{\cos^4 x(1+\cos^2 2x)}dx = 2\log_e (1 + \cos 2x)-\log_e (1 + \cos^2 ...

If cos2xsin4xcos4x(1+cos22x)dx=2loge(1+cos2x)loge(1+cos22x)+f(x)+c\int \frac{\cos 2x \sin 4x}{\cos^4 x(1+\cos^2 2x)}dx = 2\log_e (1 + \cos 2x)-\log_e (1 + \cos^2 2x) + f(x) + c, where cc is a constant of integration, then f(x)f(x) is

A

sec2x^2x

B

tan xx

C

cosec2x^2x

D

cot xx

Answer

sec2x^2x

Explanation

Solution

To solve this problem, we need to find the function f(x)f(x) given the integral expression. The key steps involve simplifying the integrand, using trigonometric identities, applying substitution, and decomposing the rational function into partial fractions.

  1. Simplify the Integrand:

    • Use the identity sin4x=2sin2xcos2x\sin 4x = 2 \sin 2x \cos 2x.
    • Use the identity cos2x=1+cos2x2\cos^2 x = \frac{1+\cos 2x}{2}, which implies cos4x=(1+cos2x)24\cos^4 x = \frac{(1+\cos 2x)^2}{4}.
    • Substitute these into the integrand to get: 8sin2xcos22x(1+cos2x)2(1+cos22x)\frac{8 \sin 2x \cos^2 2x}{(1+\cos 2x)^2(1+\cos^2 2x)}
  2. Apply Substitution:

    • Let u=cos2xu = \cos 2x, so du=2sin2xdxdu = -2 \sin 2x dx. This transforms the integral.
  3. Partial Fraction Decomposition:

    • Decompose the rational function u2(1+u)2(1+u2)\frac{u^2}{(1+u)^2(1+u^2)} into partial fractions: u2(1+u)2(1+u2)=A1+u+B(1+u)2+Cu+D1+u2\frac{u^2}{(1+u)^2(1+u^2)} = \frac{A}{1+u} + \frac{B}{(1+u)^2} + \frac{Cu+D}{1+u^2}
    • Solve for the constants A,B,C,DA, B, C, D.
  4. Integration:

    • Integrate each term of the partial fraction decomposition with respect to uu.
  5. Substitute Back:

    • Substitute back u=cos2xu = \cos 2x to express the result in terms of xx.
  6. Identify f(x):

    • Compare the obtained result with the given form 2loge(1+cos2x)loge(1+cos22x)+f(x)+c2\log_e (1 + \cos 2x)-\log_e (1 + \cos^2 2x) + f(x) + c to identify f(x)f(x).
    • Simplify f(x)f(x) using the identity 1+cos2x=2cos2x1+\cos 2x = 2\cos^2 x.

Following these steps, we find that f(x)=sec2xf(x) = \sec^2 x.