Solveeit Logo

Question

Question: If $\int \frac{4e^x+6e^{-x}}{9e^x-4e^{-x}}dx=Ax+Blog(9e^{2x}-4)+C$, then $A=..., B=...$ and $C=......

If 4ex+6ex9ex4exdx=Ax+Blog(9e2x4)+C\int \frac{4e^x+6e^{-x}}{9e^x-4e^{-x}}dx=Ax+Blog(9e^{2x}-4)+C, then A=...,B=...A=..., B=... and $C=...

A

A = -3/2, B = 35/36; C = const. of integration

B

A = 3/2, B = -35/36; C = const. of integration

C

A = -19/36, B = 35/36; C = const. of integration

D

A = 19/36, B = -35/36; C = const. of integration

Answer

A = -3/2, B = 35/36; C = const. of integration

Explanation

Solution

Let I=4ex+6ex9ex4exdxI = \int \frac{4e^x+6e^{-x}}{9e^x-4e^{-x}}dx. We express the numerator as a linear combination of the denominator and its derivative. Let D(x)=9ex4exD(x) = 9e^x - 4e^{-x}. Then D(x)=9ex+4exD'(x) = 9e^x + 4e^{-x}. We set 4ex+6ex=λ(9ex4ex)+μ(9ex+4ex)4e^x + 6e^{-x} = \lambda(9e^x - 4e^{-x}) + \mu(9e^x + 4e^{-x}). Comparing coefficients of exe^x and exe^{-x}: 9λ+9μ=49\lambda + 9\mu = 4 4λ+4μ=6-4\lambda + 4\mu = 6 Solving these equations gives λ=1936\lambda = -\frac{19}{36} and μ=3536\mu = \frac{35}{36}. The integral becomes: I=(λ+μD(x)D(x))dx=λx+μlnD(x)+CI = \int \left( \lambda + \mu \frac{D'(x)}{D(x)} \right) dx = \lambda x + \mu \ln|D(x)| + C I=1936x+3536ln9ex4ex+CI = -\frac{19}{36}x + \frac{35}{36} \ln|9e^x - 4e^{-x}| + C. Using ln9ex4ex=lnex(9e2x4)=x+ln9e2x4\ln|9e^x - 4e^{-x}| = \ln|e^{-x}(9e^{2x} - 4)| = -x + \ln|9e^{2x} - 4|: I=1936x+3536(x+ln9e2x4)+CI = -\frac{19}{36}x + \frac{35}{36}(-x + \ln|9e^{2x} - 4|) + C I=(19363536)x+3536ln9e2x4+CI = \left(-\frac{19}{36} - \frac{35}{36}\right)x + \frac{35}{36}\ln|9e^{2x} - 4| + C I=5436x+3536ln9e2x4+CI = -\frac{54}{36}x + \frac{35}{36}\ln|9e^{2x} - 4| + C I=32x+3536ln9e2x4+CI = -\frac{3}{2}x + \frac{35}{36}\ln|9e^{2x} - 4| + C. Comparing with Ax+Blog(9e2x4)+CAx+Blog(9e^{2x}-4)+C, we get A=32A = -\frac{3}{2} and B=3536B = \frac{35}{36}.