Solveeit Logo

Question

Question: If $\int \frac{3x^2+2}{\sqrt{x^2-x+1}}dx = ax\sqrt{x^2-x+1}+\frac{9}{4}\sqrt{x^2-x+1}+b\ln(|x-\frac{...

If 3x2+2x2x+1dx=axx2x+1+94x2x+1+bln(x12+x2x+1)+C,\int \frac{3x^2+2}{\sqrt{x^2-x+1}}dx = ax\sqrt{x^2-x+1}+\frac{9}{4}\sqrt{x^2-x+1}+b\ln(|x-\frac{1}{2}+\sqrt{x^2-x+1}|)+C, where CC is constant of integration, then the value of a+4ba+4b is

Answer

8

Explanation

Solution

The problem asks us to find the value of a+4ba+4b given an integral equation. The given integral is 3x2+2x2x+1dx\int \frac{3x^2+2}{\sqrt{x^2-x+1}}dx. The form of the result is axx2x+1+94x2x+1+bln(x12+x2x+1)+Cax\sqrt{x^2-x+1}+\frac{9}{4}\sqrt{x^2-x+1}+b\ln(|x-\frac{1}{2}+\sqrt{x^2-x+1}|)+C. This can be written as (ax+94)x2x+1+bln(x12+x2x+1)+C(ax+\frac{9}{4})\sqrt{x^2-x+1}+b\ln(|x-\frac{1}{2}+\sqrt{x^2-x+1}|)+C.

Let I=3x2+2x2x+1dxI = \int \frac{3x^2+2}{\sqrt{x^2-x+1}}dx. We can use the general method for integrals of the form P(x)Q(x)dx\int \frac{P(x)}{\sqrt{Q(x)}} dx, where P(x)P(x) and Q(x)Q(x) are quadratic polynomials. We express P(x)P(x) in terms of Q(x)Q(x), Q(x)Q'(x) and a constant: P(x)=λQ(x)+μQ(x)+νP(x) = \lambda Q(x) + \mu Q'(x) + \nu Here, P(x)=3x2+2P(x) = 3x^2+2 and Q(x)=x2x+1Q(x) = x^2-x+1. Q(x)=2x1Q'(x) = 2x-1. So, we write 3x2+2=λ(x2x+1)+μ(2x1)+ν3x^2+2 = \lambda(x^2-x+1) + \mu(2x-1) + \nu. Expanding the right side: 3x2+2=λx2λx+λ+2μxμ+ν3x^2+2 = \lambda x^2 - \lambda x + \lambda + 2\mu x - \mu + \nu 3x2+2=λx2+(λ+2μ)x+(λμ+ν)3x^2+2 = \lambda x^2 + (-\lambda+2\mu)x + (\lambda-\mu+\nu)

Comparing the coefficients of powers of xx:

  1. Coefficient of x2x^2: λ=3\lambda = 3.
  2. Coefficient of xx: λ+2μ=0-\lambda+2\mu = 0. Substitute λ=3\lambda=3: 3+2μ=0    2μ=3    μ=32-3+2\mu = 0 \implies 2\mu = 3 \implies \mu = \frac{3}{2}.
  3. Constant term: λμ+ν=2\lambda-\mu+\nu = 2. Substitute λ=3\lambda=3 and μ=32\mu=\frac{3}{2}: 332+ν=23-\frac{3}{2}+\nu = 2. 632+ν=2    32+ν=2    ν=232=12\frac{6-3}{2}+\nu = 2 \implies \frac{3}{2}+\nu = 2 \implies \nu = 2-\frac{3}{2} = \frac{1}{2}.

Now substitute this expression for 3x2+23x^2+2 back into the integral: I=3(x2x+1)+32(2x1)+12x2x+1dxI = \int \frac{3(x^2-x+1) + \frac{3}{2}(2x-1) + \frac{1}{2}}{\sqrt{x^2-x+1}} dx I=[3x2x+1x2x+1+322x1x2x+1+121x2x+1]dxI = \int \left[ 3\frac{x^2-x+1}{\sqrt{x^2-x+1}} + \frac{3}{2}\frac{2x-1}{\sqrt{x^2-x+1}} + \frac{1}{2}\frac{1}{\sqrt{x^2-x+1}} \right] dx I=3x2x+1dx+322x1x2x+1dx+121x2x+1dxI = 3\int \sqrt{x^2-x+1} dx + \frac{3}{2}\int \frac{2x-1}{\sqrt{x^2-x+1}} dx + \frac{1}{2}\int \frac{1}{\sqrt{x^2-x+1}} dx

Let's evaluate each part:

  1. 2x1x2x+1dx\int \frac{2x-1}{\sqrt{x^2-x+1}} dx: Let u=x2x+1u = x^2-x+1, then du=(2x1)dxdu = (2x-1)dx. duu=u1/2du=u1/21/2=2u=2x2x+1\int \frac{du}{\sqrt{u}} = \int u^{-1/2} du = \frac{u^{1/2}}{1/2} = 2\sqrt{u} = 2\sqrt{x^2-x+1}. So, 322x1x2x+1dx=32(2x2x+1)=3x2x+1\frac{3}{2}\int \frac{2x-1}{\sqrt{x^2-x+1}} dx = \frac{3}{2} (2\sqrt{x^2-x+1}) = 3\sqrt{x^2-x+1}.

  2. 1x2x+1dx\int \frac{1}{\sqrt{x^2-x+1}} dx: Complete the square in the denominator: x2x+1=(x12)2(12)2+1=(x12)2+34x^2-x+1 = (x-\frac{1}{2})^2 - (\frac{1}{2})^2 + 1 = (x-\frac{1}{2})^2 + \frac{3}{4}. This is of the form 1y2+k2dy=lny+y2+k2\int \frac{1}{\sqrt{y^2+k^2}} dy = \ln|y+\sqrt{y^2+k^2}|. Here y=x12y=x-\frac{1}{2} and k=32k=\frac{\sqrt{3}}{2}. So, 1x2x+1dx=lnx12+(x12)2+34=lnx12+x2x+1\int \frac{1}{\sqrt{x^2-x+1}} dx = \ln|x-\frac{1}{2}+\sqrt{(x-\frac{1}{2})^2+\frac{3}{4}}| = \ln|x-\frac{1}{2}+\sqrt{x^2-x+1}|. Thus, 121x2x+1dx=12lnx12+x2x+1\frac{1}{2}\int \frac{1}{\sqrt{x^2-x+1}} dx = \frac{1}{2}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}|.

  3. x2x+1dx\int \sqrt{x^2-x+1} dx: This is of the form y2+k2dy=y2y2+k2+k22lny+y2+k2\int \sqrt{y^2+k^2} dy = \frac{y}{2}\sqrt{y^2+k^2} + \frac{k^2}{2}\ln|y+\sqrt{y^2+k^2}|. Here y=x12y=x-\frac{1}{2} and k2=34k^2=\frac{3}{4}. x2x+1dx=x122x2x+1+3/42lnx12+x2x+1\int \sqrt{x^2-x+1} dx = \frac{x-\frac{1}{2}}{2}\sqrt{x^2-x+1} + \frac{3/4}{2}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}| =(x214)x2x+1+38lnx12+x2x+1= (\frac{x}{2}-\frac{1}{4})\sqrt{x^2-x+1} + \frac{3}{8}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}|. So, 3x2x+1dx=3[(x214)x2x+1+38lnx12+x2x+1]3\int \sqrt{x^2-x+1} dx = 3\left[ (\frac{x}{2}-\frac{1}{4})\sqrt{x^2-x+1} + \frac{3}{8}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}| \right] =(3x234)x2x+1+98lnx12+x2x+1= (\frac{3x}{2}-\frac{3}{4})\sqrt{x^2-x+1} + \frac{9}{8}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}|.

Combining all parts: I=(3x234)x2x+1+98lnx12+x2x+1+3x2x+1+12lnx12+x2x+1+CI = (\frac{3x}{2}-\frac{3}{4})\sqrt{x^2-x+1} + \frac{9}{8}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}| + 3\sqrt{x^2-x+1} + \frac{1}{2}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}| + C Group terms with x2x+1\sqrt{x^2-x+1}: (3x234+3)x2x+1=(3x2+3+124)x2x+1=(3x2+94)x2x+1(\frac{3x}{2}-\frac{3}{4}+3)\sqrt{x^2-x+1} = (\frac{3x}{2}+\frac{-3+12}{4})\sqrt{x^2-x+1} = (\frac{3x}{2}+\frac{9}{4})\sqrt{x^2-x+1}. Group terms with ln\ln: (98+12)lnx12+x2x+1=(9+48)lnx12+x2x+1=138lnx12+x2x+1(\frac{9}{8}+\frac{1}{2})\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}| = (\frac{9+4}{8})\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}| = \frac{13}{8}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}|.

So, I=(3x2+94)x2x+1+138lnx12+x2x+1+CI = (\frac{3x}{2}+\frac{9}{4})\sqrt{x^2-x+1} + \frac{13}{8}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}| + C.

Comparing this with the given form: axx2x+1+94x2x+1+bln(x12+x2x+1)+Cax\sqrt{x^2-x+1}+\frac{9}{4}\sqrt{x^2-x+1}+b\ln(|x-\frac{1}{2}+\sqrt{x^2-x+1}|)+C =(ax+94)x2x+1+bln(x12+x2x+1)+C= (ax+\frac{9}{4})\sqrt{x^2-x+1}+b\ln(|x-\frac{1}{2}+\sqrt{x^2-x+1}|)+C.

By comparison: a=32a = \frac{3}{2} b=138b = \frac{13}{8}

We need to find the value of a+4ba+4b. a+4b=32+4(138)a+4b = \frac{3}{2} + 4(\frac{13}{8}) a+4b=32+132a+4b = \frac{3}{2} + \frac{13}{2} a+4b=3+132=162=8a+4b = \frac{3+13}{2} = \frac{16}{2} = 8.

The final answer is 8\boxed{8}.

Explanation:

The given integral is of the form P(x)Q(x)dx\int \frac{P(x)}{\sqrt{Q(x)}} dx, where P(x)=3x2+2P(x)=3x^2+2 and Q(x)=x2x+1Q(x)=x^2-x+1. We express P(x)P(x) as λQ(x)+μQ(x)+ν\lambda Q(x) + \mu Q'(x) + \nu. By comparing coefficients, we found λ=3\lambda=3, μ=32\mu=\frac{3}{2}, and ν=12\nu=\frac{1}{2}. This transforms the integral into three parts:

  1. 3x2x+1dx3\int \sqrt{x^2-x+1} dx
  2. 322x1x2x+1dx\frac{3}{2}\int \frac{2x-1}{\sqrt{x^2-x+1}} dx
  3. 121x2x+1dx\frac{1}{2}\int \frac{1}{\sqrt{x^2-x+1}} dx

Each part is integrated using standard formulas.

  • The second integral simplifies to 3x2x+13\sqrt{x^2-x+1}.
  • The third integral simplifies to 12lnx12+x2x+1\frac{1}{2}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}|.
  • The first integral requires completing the square for x2x+1x^2-x+1 to (x12)2+34(x-\frac{1}{2})^2+\frac{3}{4}, then using y2+k2dy=y2y2+k2+k22lny+y2+k2\int \sqrt{y^2+k^2} dy = \frac{y}{2}\sqrt{y^2+k^2} + \frac{k^2}{2}\ln|y+\sqrt{y^2+k^2}|. This yields 3[(x214)x2x+1+38lnx12+x2x+1]3\left[ (\frac{x}{2}-\frac{1}{4})\sqrt{x^2-x+1} + \frac{3}{8}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}| \right].

Combining all terms and simplifying, the integral result is (3x2+94)x2x+1+138lnx12+x2x+1+C(\frac{3x}{2}+\frac{9}{4})\sqrt{x^2-x+1} + \frac{13}{8}\ln|x-\frac{1}{2}+\sqrt{x^2-x+1}|+C. Comparing this with the given form (ax+94)x2x+1+bln(x12+x2x+1)+C(ax+\frac{9}{4})\sqrt{x^2-x+1}+b\ln(|x-\frac{1}{2}+\sqrt{x^2-x+1}|)+C, we identify a=32a=\frac{3}{2} and b=138b=\frac{13}{8}. Finally, a+4b=32+4(138)=32+132=162=8a+4b = \frac{3}{2} + 4(\frac{13}{8}) = \frac{3}{2} + \frac{13}{2} = \frac{16}{2} = 8.

The final answer is 8\boxed{8}.