Question
Question: If $\int \frac{2x-\sqrt{\sin^{-1}x}}{\sqrt{1-x^2}}dx = C-2\sqrt{1-x^2}-\frac{2}{3}\sqrt{f(x)}$ then ...
If ∫1−x22x−sin−1xdx=C−21−x2−32f(x) then f(x) is equal to

sin−1x
(sin−1x)3/2
(sin−1x)3
(sin−1x)2/3
(sin−1x)3
Solution
The given integral is ∫1−x22x−sin−1xdx. We split the integral into two parts:
I=∫1−x22xdx−∫1−x2sin−1xdx
Let's evaluate the first part, I1=∫1−x22xdx. Let u=1−x2. Then du=−2xdx, so 2xdx=−du. Substitute these into the integral I1:
I1=∫u−du=−∫u−1/2du=−1/2u1/2+C1=−2u+C1=−21−x2+C1
Next, let's evaluate the second part, I2=−∫1−x2sin−1xdx. Let t=sin−1x. Then dt=1−x21dx. Substitute these into the integral I2:
I2=−∫tdt=−∫t1/2dt=−3/2t3/2+C2=−32t3/2+C2=−32(sin−1x)3/2+C2
Combining I1 and I2, the complete integral is:
∫1−x22x−sin−1xdx=I1+I2=−21−x2−32(sin−1x)3/2+(C1+C2)
Let C=C1+C2 be the arbitrary constant of integration. So, we have:
∫1−x22x−sin−1xdx=C−21−x2−32(sin−1x)3/2
The problem states that the integral is equal to C−21−x2−32f(x). Comparing our result with the given form:
C−21−x2−32(sin−1x)3/2=C−21−x2−32f(x)
By comparing the terms, we can see that:
−32(sin−1x)3/2=−32f(x)
Multiply both sides by −23:
(sin−1x)3/2=f(x)
To find f(x), square both sides of the equation:
f(x)=((sin−1x)3/2)2=(sin−1x)3