Solveeit Logo

Question

Question: If $\int \frac{1}{x^4+8x^2+9}dx = \frac{1}{k}\left[ \frac{1}{\sqrt{14}}\tan^{-1}(f(x)) - \frac{1}{\s...

If 1x4+8x2+9dx=1k[114tan1(f(x))12tan1(g(x))]+c,\int \frac{1}{x^4+8x^2+9}dx = \frac{1}{k}\left[ \frac{1}{\sqrt{14}}\tan^{-1}(f(x)) - \frac{1}{\sqrt{2}}\tan^{-1}(g(x))\right] + c,

then k2+f(3)+g(1)=\sqrt{\frac{k}{2}+ f(\sqrt{3}) + g(1)} =

Answer

2+1\sqrt{2}+1

Explanation

Solution

The integral we need to solve is I=1x4+8x2+9dxI = \int \frac{1}{x^4+8x^2+9}dx. This is a standard type of integral involving x4x^4. We can divide the numerator and denominator by x2x^2. I=1/x2x2+8+9/x2dxI = \int \frac{1/x^2}{x^2+8+9/x^2}dx.

We can rewrite the denominator using the identity x2+a2x2=(x±ax)22ax^2 + \frac{a^2}{x^2} = (x \pm \frac{a}{x})^2 \mp 2a. Here, a=3a=3. So, x2+9x2=(x3x)2+6x^2 + \frac{9}{x^2} = (x - \frac{3}{x})^2 + 6 or x2+9x2=(x+3x)26x^2 + \frac{9}{x^2} = (x + \frac{3}{x})^2 - 6. The denominator is x2+9/x2+8x^2+9/x^2+8. Using the first identity: x2+9/x2+8=(x3/x)2+6+8=(x3/x)2+14x^2+9/x^2+8 = (x-3/x)^2 + 6 + 8 = (x-3/x)^2 + 14. Using the second identity: x2+9/x2+8=(x+3/x)26+8=(x+3/x)2+2x^2+9/x^2+8 = (x+3/x)^2 - 6 + 8 = (x+3/x)^2 + 2.

The numerator is 1/x21/x^2. The derivative of (x3/x)(x-3/x) is 1+3/x21+3/x^2, and the derivative of (x+3/x)(x+3/x) is 13/x21-3/x^2. We can express 1/x21/x^2 as a linear combination of these derivatives: 1x2=A(1+3x2)+B(13x2)\frac{1}{x^2} = A\left(1+\frac{3}{x^2}\right) + B\left(1-\frac{3}{x^2}\right) 1x2=(A+B)+3(AB)x2\frac{1}{x^2} = (A+B) + \frac{3(A-B)}{x^2}. Comparing coefficients of 11 and 1/x21/x^2: A+B=0A+B = 0 3(AB)=1    AB=1/33(A-B) = 1 \implies A-B = 1/3. Adding the two equations: 2A=1/3    A=1/62A = 1/3 \implies A = 1/6. Subtracting the second from the first: 2B=1/3    B=1/62B = -1/3 \implies B = -1/6. So, 1x2=16(1+3x2)16(13x2)\frac{1}{x^2} = \frac{1}{6}\left(1+\frac{3}{x^2}\right) - \frac{1}{6}\left(1-\frac{3}{x^2}\right).

Substitute this back into the integral: I=16(1+3x2)16(13x2)x2+9/x2+8dxI = \int \frac{\frac{1}{6}\left(1+\frac{3}{x^2}\right) - \frac{1}{6}\left(1-\frac{3}{x^2}\right)}{x^2+9/x^2+8}dx I=161+3/x2(x3/x)2+14dx1613/x2(x+3/x)2+2dxI = \frac{1}{6} \int \frac{1+3/x^2}{(x-3/x)^2+14}dx - \frac{1}{6} \int \frac{1-3/x^2}{(x+3/x)^2+2}dx.

For the first integral, let u=x3/xu = x - 3/x. Then du=(1+3/x2)dxdu = (1+3/x^2)dx. The integral becomes duu2+(14)2\int \frac{du}{u^2+(\sqrt{14})^2}. duu2+(14)2=114tan1(u14)=114tan1(x3/x14)=114tan1(x23x14)\int \frac{du}{u^2+(\sqrt{14})^2} = \frac{1}{\sqrt{14}}\tan^{-1}\left(\frac{u}{\sqrt{14}}\right) = \frac{1}{\sqrt{14}}\tan^{-1}\left(\frac{x-3/x}{\sqrt{14}}\right) = \frac{1}{\sqrt{14}}\tan^{-1}\left(\frac{x^2-3}{x\sqrt{14}}\right).

For the second integral, let v=x+3/xv = x + 3/x. Then dv=(13/x2)dxdv = (1-3/x^2)dx. The integral becomes dvv2+(2)2\int \frac{dv}{v^2+(\sqrt{2})^2}. dvv2+(2)2=12tan1(v2)=12tan1(x+3/x2)=12tan1(x2+3x2)\int \frac{dv}{v^2+(\sqrt{2})^2} = \frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{v}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{x+3/x}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{x^2+3}{x\sqrt{2}}\right).

Combining the results, we get: I=16[114tan1(x23x14)12tan1(x2+3x2)]+cI = \frac{1}{6} \left[ \frac{1}{\sqrt{14}}\tan^{-1}\left(\frac{x^2-3}{x\sqrt{14}}\right) - \frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{x^2+3}{x\sqrt{2}}\right) \right] + c.

The given form is 1k[114tan1(f(x))12tan1(g(x))]+c\frac{1}{k}\left[ \frac{1}{\sqrt{14}}\tan^{-1}(f(x)) - \frac{1}{\sqrt{2}}\tan^{-1}(g(x))\right] + c. Comparing the two forms, we identify: k=6k = 6. f(x)=x23x14f(x) = \frac{x^2-3}{x\sqrt{14}}. g(x)=x2+3x2g(x) = \frac{x^2+3}{x\sqrt{2}}.

We need to evaluate the expression k2+f(3)+g(1)\sqrt{\frac{k}{2}+ f(\sqrt{3}) + g(1)}. First, calculate the required values: k=6k = 6. f(3)=(3)23314=3342=042=0f(\sqrt{3}) = \frac{(\sqrt{3})^2-3}{\sqrt{3}\sqrt{14}} = \frac{3-3}{\sqrt{42}} = \frac{0}{\sqrt{42}} = 0. g(1)=(1)2+312=1+32=42=422=22g(1) = \frac{(1)^2+3}{1\sqrt{2}} = \frac{1+3}{\sqrt{2}} = \frac{4}{\sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}.

Now substitute these values into the expression: k2+f(3)+g(1)=62+0+22=3+22\sqrt{\frac{k}{2}+ f(\sqrt{3}) + g(1)} = \sqrt{\frac{6}{2}+ 0 + 2\sqrt{2}} = \sqrt{3 + 2\sqrt{2}}.

To simplify 3+22\sqrt{3 + 2\sqrt{2}}, we look for two numbers whose sum is 3 and product is 2. These numbers are 2 and 1. So, 3+22=(2)2+(1)2+221=(2+1)23 + 2\sqrt{2} = (\sqrt{2})^2 + (1)^2 + 2 \cdot \sqrt{2} \cdot 1 = (\sqrt{2}+1)^2. 3+22=(2+1)2=2+1\sqrt{3 + 2\sqrt{2}} = \sqrt{(\sqrt{2}+1)^2} = |\sqrt{2}+1|. Since 2+1\sqrt{2}+1 is positive, 2+1=2+1|\sqrt{2}+1| = \sqrt{2}+1.

The value of the expression is 2+1\sqrt{2}+1.