Question
Question: If $\int \frac{1}{\sqrt{9-16x^2}}dx = \alpha\sin^{-1}(\beta x)+c$ then $\alpha+\frac{1}{\beta}=$...
If ∫9−16x21dx=αsin−1(βx)+c then α+β1=

1
127
1219
129
1
Solution
The given integral is ∫9−16x21dx. We need to transform the integrand into a standard form, specifically a2−x21.
Step 1: Simplify the denominator
Factor out 16 from the expression inside the square root: 9−16x2=16(169−x2) =16(43)2−x2 =4(43)2−x2
Now, substitute this back into the integral: ∫4(43)2−x21dx=41∫(43)2−x21dx
Step 2: Apply the standard integration formula
The standard integral formula for ∫a2−x21dx=sin−1(ax)+C. In our case, a=43. So, the integral becomes: 41sin−1(43x)+c =41sin−1(34x)+c
Step 3: Compare with the given form
The problem states that ∫9−16x21dx=αsin−1(βx)+c. Comparing our result 41sin−1(34x)+c with the given form, we can identify the values of α and β: α=41 β=34
Step 4: Calculate α+β1
First, find β1: β1=341=43
Now, calculate α+β1: α+β1=41+43=41+3=44=1
The final answer is 1.