Solveeit Logo

Question

Question: If $\int \frac{1}{\sqrt{9-16x^2}}dx = \alpha\sin^{-1}(\beta x)+c$ then $\alpha+\frac{1}{\beta}=$...

If 1916x2dx=αsin1(βx)+c\int \frac{1}{\sqrt{9-16x^2}}dx = \alpha\sin^{-1}(\beta x)+c then α+1β=\alpha+\frac{1}{\beta}=

A

1

B

712\frac{7}{12}

C

1912\frac{19}{12}

D

912\frac{9}{12}

Answer

1

Explanation

Solution

The given integral is 1916x2dx\int \frac{1}{\sqrt{9-16x^2}}dx. We need to transform the integrand into a standard form, specifically 1a2x2\frac{1}{\sqrt{a^2-x^2}}.

Step 1: Simplify the denominator

Factor out 16 from the expression inside the square root: 916x2=16(916x2)\sqrt{9-16x^2} = \sqrt{16\left(\frac{9}{16}-x^2\right)} =16(34)2x2= \sqrt{16} \sqrt{\left(\frac{3}{4}\right)^2-x^2} =4(34)2x2= 4\sqrt{\left(\frac{3}{4}\right)^2-x^2}

Now, substitute this back into the integral: 14(34)2x2dx=141(34)2x2dx\int \frac{1}{4\sqrt{\left(\frac{3}{4}\right)^2-x^2}}dx = \frac{1}{4} \int \frac{1}{\sqrt{\left(\frac{3}{4}\right)^2-x^2}}dx

Step 2: Apply the standard integration formula

The standard integral formula for 1a2x2dx=sin1(xa)+C\int \frac{1}{\sqrt{a^2-x^2}}dx = \sin^{-1}\left(\frac{x}{a}\right) + C. In our case, a=34a = \frac{3}{4}. So, the integral becomes: 14sin1(x34)+c\frac{1}{4} \sin^{-1}\left(\frac{x}{\frac{3}{4}}\right) + c =14sin1(4x3)+c= \frac{1}{4} \sin^{-1}\left(\frac{4x}{3}\right) + c

Step 3: Compare with the given form

The problem states that 1916x2dx=αsin1(βx)+c\int \frac{1}{\sqrt{9-16x^2}}dx = \alpha\sin^{-1}(\beta x)+c. Comparing our result 14sin1(4x3)+c\frac{1}{4} \sin^{-1}\left(\frac{4x}{3}\right) + c with the given form, we can identify the values of α\alpha and β\beta: α=14\alpha = \frac{1}{4} β=43\beta = \frac{4}{3}

Step 4: Calculate α+1β\alpha+\frac{1}{\beta}

First, find 1β\frac{1}{\beta}: 1β=143=34\frac{1}{\beta} = \frac{1}{\frac{4}{3}} = \frac{3}{4}

Now, calculate α+1β\alpha+\frac{1}{\beta}: α+1β=14+34=1+34=44=1\alpha+\frac{1}{\beta} = \frac{1}{4} + \frac{3}{4} = \frac{1+3}{4} = \frac{4}{4} = 1

The final answer is 1.