Solveeit Logo

Question

Question: If $\int \frac{(1+e^x).e^x}{(1+e^x)^2+1}dx = ln(\sqrt{g(x)})+C$, and $g(1)=(1+e)^2+1$ then the value...

If (1+ex).ex(1+ex)2+1dx=ln(g(x))+C\int \frac{(1+e^x).e^x}{(1+e^x)^2+1}dx = ln(\sqrt{g(x)})+C, and g(1)=(1+e)2+1g(1)=(1+e)^2+1 then the value of g(0)g(0) is equal to

Answer

5

Explanation

Solution

To solve the given problem, we need to evaluate the integral and then use the given conditions to find the value of g(0)g(0).

Step 1: Evaluate the integral The given integral is (1+ex).ex(1+ex)2+1dx\int \frac{(1+e^x).e^x}{(1+e^x)^2+1}dx. Let's use the substitution method. Let t=1+ext = 1+e^x. Differentiating both sides with respect to xx, we get: dt=exdxdt = e^x dx.

Now, substitute tt and dtdt into the integral: tt2+1dt\int \frac{t}{t^2+1} dt This integral is of the form f(x)f(x)dx=lnf(x)+C\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C, if we consider f(t)=t2+1f(t) = t^2+1. The derivative of t2+1t^2+1 is 2t2t. So, we need to adjust the numerator by a factor of 2. tt2+1dt=122tt2+1dt\int \frac{t}{t^2+1} dt = \frac{1}{2} \int \frac{2t}{t^2+1} dt Now, apply the integration formula: 12lnt2+1+C\frac{1}{2} \ln|t^2+1| + C Substitute back t=1+ext = 1+e^x: 12ln((1+ex)2+1)+C\frac{1}{2} \ln((1+e^x)^2+1) + C Since (1+ex)2+1(1+e^x)^2+1 is always positive for all real xx, we can remove the absolute value signs: 12ln((1+ex)2+1)+C\frac{1}{2} \ln((1+e^x)^2+1) + C

Step 2: Match the result with the given form We are given that the integral is equal to ln(g(x))+Cln(\sqrt{g(x)})+C. Let's rewrite our result using logarithm properties (alnb=lnbaa \ln b = \ln b^a): 12ln((1+ex)2+1)=ln(((1+ex)2+1)1/2)=ln((1+ex)2+1)\frac{1}{2} \ln((1+e^x)^2+1) = \ln(((1+e^x)^2+1)^{1/2}) = \ln(\sqrt{(1+e^x)^2+1}) Comparing this with ln(g(x))+Cln(\sqrt{g(x)})+C, we can identify g(x)g(x): g(x)=(1+ex)2+1g(x) = (1+e^x)^2+1

Step 3: Verify the given condition The problem states that g(1)=(1+e)2+1g(1)=(1+e)^2+1. Let's check our derived g(x)g(x) for x=1x=1: g(1)=(1+e1)2+1=(1+e)2+1g(1) = (1+e^1)^2+1 = (1+e)^2+1 This matches the given condition, confirming our expression for g(x)g(x) is correct.

Step 4: Calculate the value of g(0)g(0) Substitute x=0x=0 into the expression for g(x)g(x): g(0)=(1+e0)2+1g(0) = (1+e^0)^2+1 Since e0=1e^0 = 1: g(0)=(1+1)2+1g(0) = (1+1)^2+1 g(0)=(2)2+1g(0) = (2)^2+1 g(0)=4+1g(0) = 4+1 g(0)=5g(0) = 5

The final answer is 5\boxed{5}.

Explanation of the solution: The integral (1+ex).ex(1+ex)2+1dx\int \frac{(1+e^x).e^x}{(1+e^x)^2+1}dx is solved by substituting t=1+ext = 1+e^x, which leads to dt=exdxdt = e^x dx. The integral transforms to tt2+1dt\int \frac{t}{t^2+1} dt. This is equal to 12ln(t2+1)+C\frac{1}{2} \ln(t^2+1) + C. Substituting back t=1+ext = 1+e^x, we get 12ln((1+ex)2+1)+C\frac{1}{2} \ln((1+e^x)^2+1) + C. Using logarithm properties, this becomes ln((1+ex)2+1)+C\ln(\sqrt{(1+e^x)^2+1}) + C. Comparing this with the given ln(g(x))+Cln(\sqrt{g(x)})+C, we find g(x)=(1+ex)2+1g(x) = (1+e^x)^2+1. Finally, evaluate g(0)=(1+e0)2+1=(1+1)2+1=22+1=5g(0) = (1+e^0)^2+1 = (1+1)^2+1 = 2^2+1 = 5.