Question
Mathematics Question on Integrals of Some Particular Functions
If ∫x41−x2dx=A(x)(1−x2)m+C , for a suitable chosen integer m and a function A(x), where C is a constant of integration then (A(x))m equals :
A
3x3−1
B
27x9−1
C
9x41
D
27x61
Answer
27x9−1
Explanation
Solution
∫x41−x2dx=A(x)(1−x2)m+C
∫x4∣x∣x21−1dx
Put x21−1=t⇒dxdt=x3−2
Case-1 x ≥ 0
−21∫tdt⇒−3t3/2+C
⇒−31(x21−1)3/2
⇒−3x2(1−x2)3+C
A(x)=−3x31
(A(x))m=(−3x31)3=−27x91
Case-II x ≤ 0
We get −3x3(1−x2)3+C
A(x)=−3x31,m=3
(A(x))m=27x9−1