Question
Mathematics Question on Integrals of Some Particular Functions
If ∫log(sinx)f(x)dx=log[logsinx]+c then f(x)=
A
cotx
B
tanx
C
secx
D
cosecx
Answer
cotx
Explanation
Solution
Given, ∫log(sinx)f(x)dx=log[logsinx]+c
On differentiating both sides, we get
log(sinx)f(x)=logsinx1dxd(logsinx)+0
⇒log(sinx)f(x)=logsinx1×sinx1×cosx
⇒f(x)=cotx