Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If f(x)log(sinx)dx=log[logsinx]+c\int\frac{f\left(x\right)}{log \left(sin\,x\right)}dx = log\left[log\,sin\,x\right]+c then f(x)=f\left(x\right)=

A

cotxcot\,x

B

tanxtan\,x

C

secxsec\,x

D

cosecxcosec\,x

Answer

cotxcot\,x

Explanation

Solution

Given, f(x)log(sinx)dx=log[logsinx]+c\int \frac{f(x)}{log (\sin x)} dx=\log [log\, sin x]+c
On differentiating both sides, we get
f(x)log(sinx)=1logsinxddx(logsinx)+0\frac{f(x)}{log (sin x)}=\frac{1}{log sin x} \frac{d}{dx}(log \,sin x)+0
f(x)log(sinx)=1logsinx×1sinx×cosx\Rightarrow \frac{f(x)}{log (sin \,x)}=\frac{1}{log \,sin x} \times \frac{1}{sin\, x} \times \cos x
f(x)=cotx\Rightarrow f(x)=cot \,x