Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If f(x)logcosxdx=log(logcosx)+C\int \frac{f\left(x\right)}{log\,cos\,x}dx=-log\left(log\,cos\,x\right)+C, then f(x)f\left(x\right) is equal to

A

tanxtan\,x

B

sinx-sin\,x

C

cosx-cos\,x

D

tanx-tan\,x

Answer

tanxtan\,x

Explanation

Solution

f(x)logcosxdx=log(logcosx)+C\int \frac{f(x)}{\log\, \cos\, x} dx=-\log (\log \cos\, x)+C
Differentiating on both sides w.r.t. xx,
\frac{d}{dx}\left\\{\int \frac{f(x)}{\log \,\cos\, x} d x\right\\}
=ddxlog(logcosx)+ddx(C)=-\frac{d}{d x}\\{\log (\log \cos x)\\}+\frac{d}{d x}(C)
f(x)logcosx=1logcosx1cosx(sinx)+0\Rightarrow \, \frac{f(x)}{\log \cos x}=\frac{-1}{\log \cos x} \cdot \frac{1}{\cos x} \cdot(-\sin x)+0
f(x)logcosx=tanxlogcosx\Rightarrow\, \frac{f(x)}{\log \cos x}=\frac{\tan x}{\log \cos x}
f(x)=tanx\Rightarrow \, f (x) =\tan \,x