Question
Mathematics Question on Integrals of Some Particular Functions
If ∫logcosxf(x)dx=−log(logcosx)+C, then f(x) is equal to
A
tanx
B
−sinx
C
−cosx
D
−tanx
Answer
tanx
Explanation
Solution
∫logcosxf(x)dx=−log(logcosx)+C
Differentiating on both sides w.r.t. x,
\frac{d}{dx}\left\\{\int \frac{f(x)}{\log \,\cos\, x} d x\right\\}
=−dxdlog(logcosx)+dxd(C)
⇒logcosxf(x)=logcosx−1⋅cosx1⋅(−sinx)+0
⇒logcosxf(x)=logcosxtanx
⇒f(x)=tanx