Question
Mathematics Question on integral
If ∫x3(1+x6)32dx=f(x)(1+x6)31+C where C is a constant of integration, then f(x) is equal to :
A
−6x31
B
−x23
C
−2x21
D
−2x31
Answer
−2x31
Explanation
Solution
∫x3(1+x6)32dx
=∫x7(1+x6)32dx
Let 1+x61=t⇒−6x7dx=dt
∴ I=−61∫t32dt
=$$-\frac{3}{6}t^{\frac{1}{3}} + C
=$$-\frac{1}{2}(1 + \frac{1}{x^6})^{\frac{1}{3}} + C
=$$-\frac{1}{2x^2}(1 + x^6)^{\frac{1}{3}} + C
∴ f(x)=−2x31