Question
Mathematics Question on Differential equations
If ∫(x+2)(x2+1)dx=alog∣1+x2∣+btan−1x+51log∣x+2∣+c, then
A
a=−101 ,b=52
B
a=10−1,b=−52
C
a=101,b=52
D
a=101,b=−52
Answer
a=−101 ,b=52
Explanation
Solution
To find the values of a and b, we can compare the given integral expression with the expression
alog∣1+x2∣+btan−1(x)+51log∣x+2∣+c
Comparing the integrand of the given integral with the expression
alog∣1+x2∣+btan−1(x)+51log∣x+2∣+c,
we can see that:
a=−101andb=52
Therefore, option (A) a=−101andb=52 is the correct answer.