Question
Mathematics Question on integral
If ∫3ex+4e−x2ex+exdx = Ax + Blog( 3e2x + 4) + C, then values of A and B are respectively (where C is a constant of integration.)
A
43,241
B
34,−24
C
41,241
D
43,−241
Answer
43,−241
Explanation
Solution
3ex+4e–x2ex+3e–x = 3e2x+42e2x+3
2e2x + 3 = A(3e2x + 4) + B(6 ∙ e2x)
2 = 3A + 6B & 3 = 4A ⇒ A =43
6B = 2 – 3A
6B = 2 – 49
6B = −41
B = −241
I = ∫[(2e2x + 3)/(3e2x + 4)]dx.
I = ∫[({+ 43)(3e2x + 4) -\frac {1}{24}$$\frac {6 \times e^{2x}dx}{(3e^{2x} + 4)dx}dx.
I = 43∫dx −241)∫[(6 ∙ e2x)/(3e2x + 4)]dx.
I = 43x −241 log |3e2x + 4| + c;
by comparing,
A = 43 and B = – 241