Solveeit Logo

Question

Mathematics Question on integral

If 2ex+ex3ex+4exdx\int \frac {2e^x + e^x}{3e^x + 4e^{-x}} \,dx = Ax + Blog( 3e2x + 4) + C, then values of A and B are respectively (where C is a constant of integration.)

A

34,124\frac {3}{4}, \frac {1}{24}

B

43,24\frac {4}{3}, - 24

C

14,124\frac {1}{4}, \frac {1}{24}

D

34,124\frac {3}{4}, -\frac {1}{24}

Answer

34,124\frac {3}{4}, -\frac {1}{24}

Explanation

Solution

2ex+3ex3ex+4ex\frac {2e^x + 3e^{–x}}{3e^x + 4e^{–x}} = 2e2x+33e2x+4\frac {2e^{2x} + 3}{3e^{2x} + 4}
2e2x + 3 = A(3e2x + 4) + B(6 ∙ e2x)
2 = 3A + 6B & 3 = 4A ⇒ A =34\frac {3}{4}
6B = 2 – 3A
6B = 2 – 94\frac {9}{4}
6B = 14-\frac {1}{4}
B = 124-\frac {1}{24}
I = ∫[(2e2x + 3)/(3e2x + 4)]dx.
I = ∫[({+ 34\frac {3}{4})(3e2x + 4) -\frac {1}{24}$$\frac {6 \times e^{2x}dx}{(3e^{2x} + 4)dx}dx.
I = 34\frac {3}{4}∫dx 124-\frac {1}{24})∫[(6 ∙ e2x)/(3e2x + 4)]dx.
I = 34\frac {3}{4}x 124-\frac {1}{24} log |3e2x + 4| + c;
by comparing,
A = 34\frac {3}{4} and B = – 124\frac {1}{24}