Solveeit Logo

Question

Mathematics Question on integral

If 1x+x5dx=f(x)+c,\int \frac{1}{x+x^{5}}dx =f\left(x\right)+c , then x4x+x5dx=\int \frac{x^{4}}{x+x^{5}} dx =

A

logx+f(x)+c\log | x | + f(x) + c

B

logxf(x)+c\log | x | - f(x) + c

C

logx+xf(x)+c\log | x | + x f(x) + c

D

logxxf(x)+c\log | x | - x f(x) + c

Answer

logxf(x)+c\log | x | - f(x) + c

Explanation

Solution

1x+x5dx=f(x)+c\int \frac{1}{x+x^{5}}dx =f\left(x\right)+c
I=x4x+x5dx=x4+11x(1+x4)dxI = \int \frac{x^{4}}{x+x^{5}} dx = \int \frac{x^{4} +1 -1}{x \left(1+x^{4}\right)} dx
=x4+1x(1+x4)dx1x(1+x4)dx= \int \frac{x^4+1}{x(1+x^4)} dx - \int \frac{1}{x(1+x^4)} dx
=1xdx1x+x5dx= \int \frac{1}{x} dx - \int \frac{1}{x+x^5} dx
=logxf(x)+c= log |x| - f(x) + c