Solveeit Logo

Question

Mathematics Question on Integral Calculus

If 1(x1)45(x+3)6dx=A(αx1βx+3)B+C,\int \frac{1}{\sqrt[5]{(x - 1)^4}(x + 3)^6} \, dx = A \left( \frac{\alpha x - 1}{\beta x + 3} \right)^B + C, where CC is the constant of integration, then the value of α+β+20AB\alpha + \beta + 20AB is _______.

Answer

Consider the given integral:
I=1(x1)4/5(x+3)6/5dx.I = \int \frac{1}{(x - 1)^{4/5}(x + 3)^{6/5}} dx.
To simplify, let:
I=1(x1)4/5(x+3)6/5dx=1(x1)4/5(x+3)2dx.I = \int \frac{1}{(x - 1)^{4/5}(x + 3)^{6/5}} dx = \int \frac{1}{(x - 1)^{4/5}(x + 3)^2} dx.
Substitute:
t=x1x+3    dt=4(x+3)2dx.t = \frac{x - 1}{x + 3} \implies dt = \frac{4}{(x + 3)^2} dx.
Thus, the integral becomes:
I=14t4/5dt.I = \frac{1}{4} \int t^{-4/5} dt.
Integrating:
I=14t1/51/5+C=54t1/5+C.I = \frac{1}{4} \cdot \frac{t^{1/5}}{1/5} + C = \frac{5}{4} t^{1/5} + C.
Substituting back t=x1x+3t = \frac{x - 1}{x + 3}:
I=54(x1x+3)1/5+C.I = \frac{5}{4} \left(\frac{x - 1}{x + 3}\right)^{1/5} + C.
Comparing with:
1(x1)4(x+3)65dx=A(αx1βx+3)B+C.\int \frac{1}{\sqrt[5]{(x - 1)^4(x + 3)^6}} dx = A \left(\frac{\alpha x - 1}{\beta x + 3}\right)^B + C.
We have:
A=54,α=β=1,B=15.A = \frac{5}{4}, \quad \alpha = \beta = 1, \quad B = \frac{1}{5}.
Calculating α+β+20AB\alpha + \beta + 20AB:
α+β+20AB=1+1+20×54×15=7.\alpha + \beta + 20AB = 1 + 1 + 20 \times \frac{5}{4} \times \frac{1}{5} = 7.
Answer: 7.