Question
Mathematics Question on Integral Calculus
If ∫5(x−1)4(x+3)61dx=A(βx+3αx−1)B+C, where C is the constant of integration, then the value of α+β+20AB is _______.
Answer
Consider the given integral:
I=∫(x−1)4/5(x+3)6/51dx.
To simplify, let:
I=∫(x−1)4/5(x+3)6/51dx=∫(x−1)4/5(x+3)21dx.
Substitute:
t=x+3x−1⟹dt=(x+3)24dx.
Thus, the integral becomes:
I=41∫t−4/5dt.
Integrating:
I=41⋅1/5t1/5+C=45t1/5+C.
Substituting back t=x+3x−1:
I=45(x+3x−1)1/5+C.
Comparing with:
∫5(x−1)4(x+3)61dx=A(βx+3αx−1)B+C.
We have:
A=45,α=β=1,B=51.
Calculating α+β+20AB:
α+β+20AB=1+1+20×45×51=7.
Answer: 7.