Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If 1a2sin2x+b2cos2xdx=112tan1(3tanx)+constant,\int \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} \, dx = \frac{1}{12} \tan^{-1}(3 \tan x) + \text{constant},then the maximum value of asinx+bcosxa \sin x + b \cos x is:

A

40\sqrt{40}

B

39\sqrt{39}

C

42\sqrt{42}

D

41\sqrt{41}

Answer

40\sqrt{40}

Explanation

Solution

sec2xdxa2tan2x+b2\int \frac{\sec^2 x \, dx}{a^2 \tan^2 x + b^2}
Let tanx=t\tan x = t, then sec2xdx=dt\sec^2 x \, dx = dt.
=dta2t2+b2= \int \frac{dt}{a^2 t^2 + b^2}
=1a2dtt2+(ba)2= \frac{1}{a^2} \int \frac{dt}{t^2 + \left( \frac{b}{a} \right)^2}
=1abtan1(tab)+c= \frac{1}{ab} \tan^{-1} \left( \frac{ta}{b} \right) + c
=1abtan1(abtanx)+c= \frac{1}{ab} \tan^{-1} \left( \frac{a}{b} \tan x \right) + c
On comparing, ab=3\frac{a}{b} = 3.
ab=12ab = 12
a=6,b=2a = 6, \quad b = 2
Maximum Value:
The maximum value of 6sinx+2cosx6 \sin x + 2 \cos x is 40\sqrt{40}.