Question
Mathematics Question on Trigonometric Identities
If ∫a2sin2x+b2cos2x1dx=121tan−1(3tanx)+constant,then the maximum value of asinx+bcosx is:
A
40
B
39
C
42
D
41
Answer
40
Explanation
Solution
∫a2tan2x+b2sec2xdx
Let tanx=t, then sec2xdx=dt.
=∫a2t2+b2dt
=a21∫t2+(ab)2dt
=ab1tan−1(bta)+c
=ab1tan−1(batanx)+c
On comparing, ba=3.
ab=12
a=6,b=2
Maximum Value:
The maximum value of 6sinx+2cosx is 40.