Question
Mathematics Question on Definite Integral
If ∫f(x)sinxcosxdx=2(b2−a2)1logf(x)+c, where c is the constant of integration , then f(x) =
A
(b2−a2)sin2x2
B
absin2x2
C
(b2−a2)cos2x2
D
abcos2x2
Answer
(b2−a2)cos2x2
Explanation
Solution
We have, ∫f(x)sinxcosxdx=2(b2−a2)1log(f(x))+c
⇒f(x)sinxcosx=2(b2−a2)1⋅f(x)1⋅f′(x)
⇒f(x)sin2x=b2−a21⋅f(x)f′(x)
⇒sin2x=b2−a21(f(x))2f′(x)
⇒∫sin2xdx=b2−a21∫(f(x))2f′(x)dx
⇒2−cos2x=b2−a21⋅(f(x)−1)
⇒2cos2x(b2−a2)=f(x)1
⇒f(x)=(b2−a2)cos2x2