Question
Mathematics Question on integral
If ∫f(x)dx=Ψ(x) then ∫x5f(x3)dx is equal to
A
31x3Ψ(x3)−3∫x3Ψ(x3)dx+C
B
31x3Ψ(x3)−∫x3Ψ(x3)dx+C
C
31[x3Ψ(x3)−3∫x3Ψ(x3)dx]+C
D
31[x3Ψ(x3)−∫x2Ψ(x3)dx]+C
Answer
31x3Ψ(x3)−∫x3Ψ(x3)dx+C
Explanation
Solution
Let x3=u, then 3x2dx=du
Also suppose ∫f(x)dxΨ(x)
Now ∫x5f(x3)dx=31∫uf(u)du
=31[u∫f(u)dx−∫(∫f(u))du]
=31[x3Ψ(x3)−∫x2Ψ(x3)dx]+C