Solveeit Logo

Question

Question: If $\int e^x (x^3 + x^2 - x + 4) dx = e^x f(x) + c$, then $f(1) =$...

If ex(x3+x2x+4)dx=exf(x)+c\int e^x (x^3 + x^2 - x + 4) dx = e^x f(x) + c, then f(1)=f(1) =

Answer

3

Explanation

Solution

The given integral is ex(x3+x2x+4)dx\int e^x (x^3 + x^2 - x + 4) dx. We are given that the integral is equal to exf(x)+ce^x f(x) + c. This integral is of the form exP(x)dx\int e^x P(x) dx, where P(x)P(x) is a polynomial. A standard result for such integrals is exP(x)dx=ex(P(x)P(x)+P(x)P(x)+)+c\int e^x P(x) dx = e^x (P(x) - P'(x) + P''(x) - P'''(x) + \dots) + c, where the derivatives are taken until they become zero.

In this case, P(x)=x3+x2x+4P(x) = x^3 + x^2 - x + 4. Let's find the derivatives of P(x)P(x):

P(x)=ddx(x3+x2x+4)=3x2+2x1P'(x) = \frac{d}{dx}(x^3 + x^2 - x + 4) = 3x^2 + 2x - 1

P(x)=ddx(3x2+2x1)=6x+2P''(x) = \frac{d}{dx}(3x^2 + 2x - 1) = 6x + 2

P(x)=ddx(6x+2)=6P'''(x) = \frac{d}{dx}(6x + 2) = 6

P(4)(x)=ddx(6)=0P^{(4)}(x) = \frac{d}{dx}(6) = 0

Using the formula, the integral is:

ex(x3+x2x+4)dx=ex(P(x)P(x)+P(x)P(x))+c\int e^x (x^3 + x^2 - x + 4) dx = e^x (P(x) - P'(x) + P''(x) - P'''(x)) + c

=ex((x3+x2x+4)(3x2+2x1)+(6x+2)(6))+c= e^x ((x^3 + x^2 - x + 4) - (3x^2 + 2x - 1) + (6x + 2) - (6)) + c

=ex(x3+x2x+43x22x+1+6x+26)+c= e^x (x^3 + x^2 - x + 4 - 3x^2 - 2x + 1 + 6x + 2 - 6) + c

Combine the terms inside the parenthesis:

=ex(x3+(13)x2+(12+6)x+(4+1+26))+c= e^x (x^3 + (1 - 3)x^2 + (-1 - 2 + 6)x + (4 + 1 + 2 - 6)) + c

=ex(x32x2+3x+1)+c= e^x (x^3 - 2x^2 + 3x + 1) + c

We are given that ex(x3+x2x+4)dx=exf(x)+c\int e^x (x^3 + x^2 - x + 4) dx = e^x f(x) + c. Comparing this with our result, we find that f(x)=x32x2+3x+1f(x) = x^3 - 2x^2 + 3x + 1.

We need to find the value of f(1)f(1). Substitute x=1x = 1 into the expression for f(x)f(x):

f(1)=(1)32(1)2+3(1)+1f(1) = (1)^3 - 2(1)^2 + 3(1) + 1

f(1)=12(1)+3(1)+1f(1) = 1 - 2(1) + 3(1) + 1

f(1)=12+3+1f(1) = 1 - 2 + 3 + 1

f(1)=52f(1) = 5 - 2

f(1)=3f(1) = 3