Solveeit Logo

Question

Question: If $\int e^{\sin x} \cdot [\frac{x\cos^3x-\sin x}{\cos^2x}] dx = e^{\sin x} f(x) + c$ where c is con...

If esinx[xcos3xsinxcos2x]dx=esinxf(x)+c\int e^{\sin x} \cdot [\frac{x\cos^3x-\sin x}{\cos^2x}] dx = e^{\sin x} f(x) + c where c is constant of integration, then f(x)f(x) is equal to

A

sec xxx - x

B

xx - sec xx

C

tan xxx - x

D

xx - tan xx

Answer

xsec xx - \text{sec } x

Explanation

Solution

The given integral is esinx[xcos3xsinxcos2x]dx=esinxf(x)+c\int e^{\sin x} \cdot [\frac{x\cos^3x-\sin x}{\cos^2x}] dx = e^{\sin x} f(x) + c.
Let's simplify the expression inside the square brackets:
xcos3xsinxcos2x=xcos3xcos2xsinxcos2x=xcosxsinxcos2x=xcosxsinxcosx1cosx=xcosxtanxsecx\frac{x\cos^3x-\sin x}{\cos^2x} = \frac{x\cos^3x}{\cos^2x} - \frac{\sin x}{\cos^2x} = x\cos x - \frac{\sin x}{\cos^2x} = x\cos x - \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} = x\cos x - \tan x \sec x.
So the integral becomes esinx(xcosxtanxsecx)dx\int e^{\sin x} (x\cos x - \tan x \sec x) dx.

We are given that this integral is equal to esinxf(x)+ce^{\sin x} f(x) + c.
Differentiating both sides with respect to xx, we get:
ddx(esinx(xcosxtanxsecx)dx)=ddx(esinxf(x)+c)\frac{d}{dx} \left( \int e^{\sin x} (x\cos x - \tan x \sec x) dx \right) = \frac{d}{dx} (e^{\sin x} f(x) + c)
The left side is the integrand:
esinx(xcosxtanxsecx)e^{\sin x} (x\cos x - \tan x \sec x)
The right side is the derivative of the product esinxf(x)e^{\sin x} f(x):
ddx(esinxf(x))=esinxddx(f(x))+f(x)ddx(esinx)=esinxf(x)+f(x)esinxcosx=esinx[f(x)+f(x)cosx]\frac{d}{dx} (e^{\sin x} f(x)) = e^{\sin x} \frac{d}{dx}(f(x)) + f(x) \frac{d}{dx}(e^{\sin x}) = e^{\sin x} f'(x) + f(x) e^{\sin x} \cos x = e^{\sin x} [f'(x) + f(x) \cos x].

Equating the left and right sides:
esinx(xcosxtanxsecx)=esinx[f(x)+f(x)cosx]e^{\sin x} (x\cos x - \tan x \sec x) = e^{\sin x} [f'(x) + f(x) \cos x]
Dividing by esinxe^{\sin x} (which is always non-zero):
xcosxtanxsecx=f(x)+f(x)cosxx\cos x - \tan x \sec x = f'(x) + f(x) \cos x
f(x)+(cosx)f(x)=xcosxtanxsecxf'(x) + (\cos x) f(x) = x\cos x - \tan x \sec x

We need to find the function f(x)f(x) that satisfies this equation. We can test the given options.
Option 1: f(x)=secxxf(x) = \sec x - x
f(x)=secxtanx1f'(x) = \sec x \tan x - 1
f(x)+f(x)cosx=(secxtanx1)+(secxx)cosx=secxtanx1+secxcosxxcosx=secxtanx1+1xcosx=secxtanxxcosxf'(x) + f(x) \cos x = (\sec x \tan x - 1) + (\sec x - x) \cos x = \sec x \tan x - 1 + \sec x \cos x - x\cos x = \sec x \tan x - 1 + 1 - x\cos x = \sec x \tan x - x\cos x.
This is not equal to xcosxtanxsecxx\cos x - \tan x \sec x.

Option 2: f(x)=xsecxf(x) = x - \sec x
f(x)=1secxtanxf'(x) = 1 - \sec x \tan x
f(x)+f(x)cosx=(1secxtanx)+(xsecx)cosx=1secxtanx+xcosxsecxcosx=1secxtanx+xcosx1=xcosxsecxtanxf'(x) + f(x) \cos x = (1 - \sec x \tan x) + (x - \sec x) \cos x = 1 - \sec x \tan x + x\cos x - \sec x \cos x = 1 - \sec x \tan x + x\cos x - 1 = x\cos x - \sec x \tan x.
This matches the required expression xcosxtanxsecxx\cos x - \tan x \sec x.
So, f(x)=xsecxf(x) = x - \sec x is the correct function.

Let's verify the general formula for integration: eg(x)[g(x)f(x)+f(x)]dx=eg(x)f(x)+c\int e^{g(x)} [g'(x) f(x) + f'(x)] dx = e^{g(x)} f(x) + c.
In this case, g(x)=sinxg(x) = \sin x, so g(x)=cosxg'(x) = \cos x.
The integrand is esinx(xcosxtanxsecx)e^{\sin x} (x\cos x - \tan x \sec x).
We need to check if xcosxtanxsecxx\cos x - \tan x \sec x can be written in the form f(x)cosx+f(x)f(x) \cos x + f'(x) for some function f(x)f(x).
If we take f(x)=xsecxf(x) = x - \sec x, then f(x)=1secxtanxf'(x) = 1 - \sec x \tan x.
f(x)cosx+f(x)=(xsecx)cosx+(1secxtanx)=xcosxsecxcosx+1secxtanx=xcosx1+1secxtanx=xcosxsecxtanxf(x) \cos x + f'(x) = (x - \sec x)\cos x + (1 - \sec x \tan x) = x\cos x - \sec x \cos x + 1 - \sec x \tan x = x\cos x - 1 + 1 - \sec x \tan x = x\cos x - \sec x \tan x.
This matches the term multiplying esinxe^{\sin x} in the integrand.
Thus, the integral is esinx[cosx(xsecx)+(1secxtanx)]dx=esinx[g(x)f(x)+f(x)]dx\int e^{\sin x} [\cos x (x - \sec x) + (1 - \sec x \tan x)] dx = \int e^{\sin x} [g'(x) f(x) + f'(x)] dx, where g(x)=sinxg(x) = \sin x and f(x)=xsecxf(x) = x - \sec x.
Using the formula, the integral is esinxf(x)+c=esinx(xsecx)+ce^{\sin x} f(x) + c = e^{\sin x} (x - \sec x) + c.
Comparing this with the given equation, we find f(x)=xsecxf(x) = x - \sec x.