Solveeit Logo

Question

Question: If \[\int {{e^x}} \left( {f\left( x \right) - f'\left( x \right)} \right)dx = \phi \left( x \right)\...

If ex(f(x)f(x))dx=ϕ(x)\int {{e^x}} \left( {f\left( x \right) - f'\left( x \right)} \right)dx = \phi \left( x \right), then exf(x)dx=\int {{e^x}} f\left( x \right)dx =

Explanation

Solution

Here we will use the distributive property and solve the equation. Then we will apply the formula of the integration of u×vu \times v in the equation. Then by simplifying and solving the equation we will get the value of exf(x)dx\int {{e^x}} f\left( x \right)dx.

Complete step by step solution:
Given equation is ex(f(x)f(x))dx=ϕ(x)\int {{e^x}} \left( {f\left( x \right) - f'\left( x \right)} \right)dx = \phi \left( x \right).
Now we will use the distributive property and write the simplified equation. Therefore, we get
exf(x)dxexf(x)dx=ϕ(x)\Rightarrow \int {{e^x}} f\left( x \right)dx - \int {{e^x}} f'\left( x \right)dx = \phi \left( x \right)
Now we will apply the basic formula of the integration of u×vu \times v i.e. (u×v)dx=uvdx(uvdx)dx\int {\left( {u \times v} \right)dx} = u\int {vdx} - \int {\left( {u'\int {vdx} } \right)dx} and solve the second term of the equation using this formula where u=ex,v=f(x)u = {e^x},v = f'\left( x \right). Therefore, we get
exf(x)dx(exf(x)dx(exf(x)dx)dx)=ϕ(x)\Rightarrow \int {{e^x}} f\left( x \right)dx - \left( {{e^x}\int {f'\left( x \right)dx} - \int {\left( {{e^x}\int {f'\left( x \right)dx} } \right)dx} } \right) = \phi \left( x \right)
We know that the integration of any differential function is equals to the value of the function i.e. f(x)dx=f(x)\int {f'\left( x \right)dx} = f\left( x \right). Therefore, we get
exf(x)dx(exf(x)(exf(x))dx)=ϕ(x)\Rightarrow \int {{e^x}} f\left( x \right)dx - \left( {{e^x}f\left( x \right) - \int {\left( {{e^x}f\left( x \right)} \right)dx} } \right) = \phi \left( x \right)
Now we will simplify and solve the above equation to get the value of exf(x)dx\int {{e^x}} f\left( x \right)dx. Therefore, we get
exf(x)dxexf(x)+exf(x)dx=ϕ(x)\Rightarrow \int {{e^x}} f\left( x \right)dx - {e^x}f\left( x \right) + \int {{e^x}} f\left( x \right)dx = \phi \left( x \right)
Adding the like terms, we get
2exf(x)dx=ϕ(x)+exf(x)\Rightarrow 2\int {{e^x}} f\left( x \right)dx = \phi \left( x \right) + {e^x}f\left( x \right)
Dividing both sides by 2, we get
exf(x)dx=ϕ(x)+exf(x)2\Rightarrow \int {{e^x}} f\left( x \right)dx = \dfrac{{\phi \left( x \right) + {e^x}f\left( x \right)}}{2}
Rewriting the above equation, we get
exf(x)dx=12(ϕ(x)+exf(x))\Rightarrow \int {{e^x}} f\left( x \right)dx = \dfrac{1}{2}\left( {\phi \left( x \right) + {e^x}f\left( x \right)} \right)

Hence the value of exf(x)dx\int {{e^x}} f\left( x \right)dx is equal to 12(ϕ(x)+exf(x))\dfrac{1}{2}\left( {\phi \left( x \right) + {e^x}f\left( x \right)} \right).

Note:
Here we have to simplify and solve the equation accordingly so that we will get the value of the desired term. The formula of the integration of u×vu \times v must be applied only to the second term of the equation because it contains the differential of the function f(x)f\left( x \right) so that when we solve the equation we will get the final equation in terms of exf(x)dx\int {{e^x}} f\left( x \right)dx because it contains the differential of the function f(x)f\left( x \right). We should know the basic formula of the integration of u×vu \times v and uv\dfrac{u}{v} as well as the formulas of the differentiation of u×vu \times v and uv\dfrac{u}{v}.
ddx(uv)=udvdx+vdudxddx(uv)=vdudxudvdxv2\begin{array}{l}\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\\\\\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\end{array}
Differentiation of the exponential function is equal to itself along with the differentiation of its exponent i.e. ddx(ex)=exdxdx=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x} \cdot \dfrac{{dx}}{{dx}} = {e^x}.