Solveeit Logo

Question

Question: If \(\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\...

If esecx(secxtanxf(x)+(secxtanx+sec2x))dx=esecxf(x)+C,\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C, find a possible choice of f(x)
A. secxtanx12\sec x - \tan x - \dfrac{1}{2}
B. xsecx+tanx+12x\sec x + \tan x + \dfrac{1}{2}
C. secx+xtanx12\sec x + x\tan x - \dfrac{1}{2}
D. secx+tanx+12\sec x + \tan x + \dfrac{1}{2}

Explanation

Solution

Hint: We need to know the formulae of integration of basic trigonometric functions to solve the given problem.

Complete step-by-step answer:
Given equation is esecx(secxtanxf(x)+(secxtanx+sec2x))dx=esecxf(x)+C\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C
Differentiating the above equation both sides with respect to x,
esecx(secxtanxf(x)+(secxtanx+sec2x))=esecxsecxtanxf(x)+esecxf(x){e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right) = {e^{\sec x}} \cdot \sec x \cdot \tan x \cdot f(x) + {e^{\sec x}} \cdot f'(x)
Cancelling the common terms on both sides of the above equation, we get
f(x)=sec2x+tanxsecxf'(x) = {\sec ^2}x + \tan x \cdot \sec x
We need to find f(x), so integrating the above equation with respect to x,
f(x)=(sec2x+tanxsecx)dx\Rightarrow \int {f'(x)} = \int {({{\sec }^2}x + \tan x \cdot \sec x} )dx
f(x)=tanx+secx+c\Rightarrow f(x) = \tan x + \sec x + c
\therefore Option D is the correct answer.

Note: We need the value of f(x) from the given equation, for simplifying, we differentiate the given equation to get rid of extra terms and then again integrate to get the desired result. We used these basic integration formulae
sec2x  dx=tanx+c\int {{{\sec }^2}x\;} dx = \tan x + c
tanxsecx  dx=secx+c\int {\tan x \cdot \sec x} \;dx = \sec x + c