Solveeit Logo

Question

Question: If \(\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx=...

If esecx(secxtanxf(x)+secxtanx+tan2x).dx=esecxf(x)+c\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx={{e}^{\sec x}}f\left( x \right)+c}. Then f(x)f\left( x \right) is
A.secx+xtanx+12\sec x+x\tan x+\dfrac{1}{2}
B.xsecx+xtanx+12x\sec x+x\tan x+\dfrac{1}{2}
C.xsecx+x2tanx+12x\sec x+{{x}^{2}}\tan x+\dfrac{1}{2}
D.secx+tanxx+12\sec x+\tan x-x+\dfrac{1}{2}

Explanation

Solution

We are given a function which consists of multiple trigonometric functions. First we will differentiate the given equation which would help us to simplify our equation and get rid of esecx{{e}^{\sec x}}. Then, we will find the anti-derivative or integral of the equation thus obtained to transform f(x){f}'\left( x \right) to f(x)f\left( x \right).

Complete step by step solution:
We are given the equation esecx(secxtanxf(x)+secxtanx+tan2x).dx=esecxf(x)+c\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx={{e}^{\sec x}}f\left( x \right)+c}.
Differentiating both sides, we get
\Rightarrow \dfrac{d}{dx}\left\\{ \int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx} \right\\}=\dfrac{d}{dx}\left( {{e}^{\sec x}}f\left( x \right)+c \right)

& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\\ & \Rightarrow {{e}^{\sec x}}\sec x\tan xf\left( x \right)+{{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\\ \end{aligned}$$ Cancelling $${{e}^{\sec x}}\sec x\tan xf\left( x \right)$$ from both sides, we get $$\begin{aligned} & \Rightarrow {{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right) \\\ & \Rightarrow {{e}^{\sec x}}\left( \sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right) \\\ \end{aligned}$$ Now, dividing both sides by ${{e}^{\sec x}}$, we get $$\Rightarrow \sec x\tan x+{{\tan }^{2}}x={f}'\left( x \right)$$ Here, in order to find $f\left( x \right)$, we shall calculate the antiderivative or the integral of ${f}'\left( x \right)$. $$\begin{aligned} & \Rightarrow \int{{f}'\left( x \right).dx=\int{\left( \sec x\tan x+{{\tan }^{2}}x \right).dx}} \\\ & \Rightarrow \int{{f}'\left( x \right).dx=\int{\sec x\tan x.dx}}+\int{{{\tan }^{2}}x.dx} \\\ \end{aligned}$$ We shall calculate these two integrals individually and then combine them to find our final result. Since, $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$ , $$\begin{aligned} & \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{\cos x}.\dfrac{\sin x}{\cos x}.dx} \\\ & \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{\sin x}{{{\left( \cos x \right)}^{2}}}.dx} \\\ \end{aligned}$$ Performing simple substitution, we see that if $t=\cos x$. Then, $dt=-\sin x.dx$ $$\begin{aligned} & \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{{{\left( t \right)}^{2}}}.-dt} \\\ & \Rightarrow \int{\sec x\tan x.dx}=-\int{{{t}^{-2}}dt} \\\ \end{aligned}$$ Using the property of integration, $\int{{{x}^{n}}.dx=}\dfrac{{{x}^{n+1}}}{n+1}+C$, we get $$\begin{aligned} & \Rightarrow \int{\sec x\tan x.dx}=-\dfrac{{{t}^{-2+1}}}{-2+1}+C \\\ & \Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{t}+C \\\ \end{aligned}$$ Substituting the value of $t=\cos x$, we get $$\Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{\cos x}+C$$ $$\Rightarrow \int{\sec x\tan x.dx}=\sec x+C$$ …………………. (1) Also, we know that ${{\tan }^{2}}x={{\sec }^{2}}x-1$, substituting this value, we get $$\begin{aligned} & \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{\left( {{\sec }^{2}}x-1 \right)}.dx \\\ & \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{{{\sec }^{2}}x.dx}-\int{1.dx} \\\ \end{aligned}$$ Using the property of integration, $\int{{{\sec }^{2}}.dx=}\tan x+C$ as well as $\int{1.dx=x+C}$ , we get$$\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x+C-x+C$$ $$\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x-x+C$$ ………………….. (2) Combining (1) and (2), we get $$\begin{aligned} & \Rightarrow \int{{f}'\left( x \right).dx=\left( \sec x+C \right)}+\left( \tan x-x+C \right) \\\ & \Rightarrow f\left( x \right)+C=\sec x+\tan x-x+C \\\ \end{aligned}$$ $$\Rightarrow f\left( x \right)=\sec x+\tan x-x+C$$ We shall now compare the calculated value of f(x) with the options given in the problem and we find that it best matches option (D). **Therefore, the correct option is (D) $\sec x+\tan x-x+\dfrac{1}{2}$.** **Note:** While performing indefinite integration, we must take special care about adding the constant of integration, C to our answer of integral. If we substitute the values of any point lying on a particular curve, then we can calculate the exact value of this constant of integration and hence, the general equation transforms into the equation of that particular curve only.