Question
Question: If \(\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx=...
If ∫esecx(secxtanxf(x)+secxtanx+tan2x).dx=esecxf(x)+c. Then f(x) is
A.secx+xtanx+21
B.xsecx+xtanx+21
C.xsecx+x2tanx+21
D.secx+tanx−x+21
Solution
We are given a function which consists of multiple trigonometric functions. First we will differentiate the given equation which would help us to simplify our equation and get rid of esecx. Then, we will find the anti-derivative or integral of the equation thus obtained to transform f′(x) to f(x).
Complete step by step solution:
We are given the equation ∫esecx(secxtanxf(x)+secxtanx+tan2x).dx=esecxf(x)+c.
Differentiating both sides, we get
\Rightarrow \dfrac{d}{dx}\left\\{ \int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx} \right\\}=\dfrac{d}{dx}\left( {{e}^{\sec x}}f\left( x \right)+c \right)