Solveeit Logo

Question

Mathematics Question on Methods of Integration

If e2xf(x)dx=g(x)\int e^{2x}f' \left(x\right)dx =g \left(x\right), then (e2xf(x)+e2xf(x))dx= \int\left(e^{2x}f\left(x\right) + e^{2x} f' \left(x\right)\right)dx =

A

12[e2xf(x)g(x)]+C\frac{1}{2} [e^{2x} f(x) - g (x)] + C

B

12[e2xf(x)+g(x)]+C\frac{1}{2} [e^{2x} f(x) + g (x)] + C

C

12[e2xf(2x)+g(x)]+C\frac{1}{2} [e^{2x} f'(2x) + g (x)] + C

D

12[e2xf(2x)+g(x)]+C\frac{1}{2} [e^{2x} f'(2x) + g (x)] + C

Answer

12[e2xf(x)g(x)]+C\frac{1}{2} [e^{2x} f(x) - g (x)] + C

Explanation

Solution

We have,
e2xf(x)dx=g(x)\int e^{2 x} f^{\prime}(x) d x=g(x)
Let I=(e2xf(x)+e2xf(x))dxI=\int\left(e^{2 x} f(x)+e^{2 x} f^{\prime}(x)\right) d x
=f(x)e2xdxf(x)e2xdx)dx+e2xf(x)dx\left.=f(x) \int e^{2 x} d x-\int f^{\prime}(x) \int e^{2 x} d x\right) d x+\int e^{2 x} f^{\prime}(x) d x
=f(x)e2x212e2xf(x)dx+e2xf(x)dx=\frac{f(x) e^{2 x}}{2}-\frac{1}{2} \int e^{2 x} f^{\prime}(x) d x+\int e^{2 x} f^{\prime}(x) d x
=e2x2f(x)12e2xf(x)dx=\frac{e^{2 x}}{2} f(x)-\frac{1}{2} \int e^{2 x} f^{\prime}(x) d x
=12[e2xf(x)e2xf(x)dx]=\frac{1}{2}\left[e^{2 x} f(x)-\int e^{2 x} f^{\prime}(x) d x\right]
=12[e2xf(x)g(x)]+C=\frac{1}{2}\left[e^{2 x} f(x)-g(x)\right]+C