Question
Mathematics Question on Methods of Integration
If ∫e2xf′(x)dx=g(x), then ∫(e2xf(x)+e2xf′(x))dx=
A
21[e2xf(x)−g(x)]+C
B
21[e2xf(x)+g(x)]+C
C
21[e2xf′(2x)+g(x)]+C
D
21[e2xf′(2x)+g(x)]+C
Answer
21[e2xf(x)−g(x)]+C
Explanation
Solution
We have,
∫e2xf′(x)dx=g(x)
Let I=∫(e2xf(x)+e2xf′(x))dx
=f(x)∫e2xdx−∫f′(x)∫e2xdx)dx+∫e2xf′(x)dx
=2f(x)e2x−21∫e2xf′(x)dx+∫e2xf′(x)dx
=2e2xf(x)−21∫e2xf′(x)dx
=21[e2xf(x)−∫e2xf′(x)dx]
=21[e2xf(x)−g(x)]+C