Solveeit Logo

Question

Question: If \[\int {\dfrac{{\log (t + \sqrt {1 + {t^2}} )}}{{\sqrt {1 + {t^2}} }}} dt = \dfrac{1}{2}{(g(t))^2...

If log(t+1+t2)1+t2dt=12(g(t))2+c\int {\dfrac{{\log (t + \sqrt {1 + {t^2}} )}}{{\sqrt {1 + {t^2}} }}} dt = \dfrac{1}{2}{(g(t))^2} + c where c is constant, then g(2)g(2) is equal to,
A) 15log(2+5) \dfrac{1}{{\sqrt 5 }}\log (2 + \sqrt 5 ){\text{ }}
B) 2log(2+5) 2\log (2 + \sqrt 5 ){\text{ }}
C) log(2+5) \log (2 + \sqrt 5 ){\text{ }}
D) 12log(2+5) \dfrac{1}{2}\log (2 + \sqrt 5 ){\text{ }}

Explanation

Solution

Calculate the given integration using substitution method of the given function, we substitute x=log(t+1+t2)x = \log (t + \sqrt {1 + {t^2}} ). And then on comparing both the sides find the value of g(t)g\left( t \right). As the value of g(2)g(2) can be calculated from there by replacing the value of t with two.

Complete step by step solution: As the given integration is of log(t+1+t2)1+t2.dt\int {\dfrac{{\log (t + \sqrt {1 + {t^2}} )}}{{\sqrt {1 + {t^2}} }}} .dt
So, by using substitution method,
x=log(t+1+t2)x = \log (t + \sqrt {1 + {t^2}} )
Now, differentiate both sides and then substitute them in the above given equation as,

dx=1t+1+t2(1+2t21+t2).dt dx=1t+1+t2(1+t1+t2).dt  dx = \dfrac{1}{{t + \sqrt {1 + {t^2}} }}(1 + \dfrac{{2t}}{{2\sqrt {1 + {t^2}} }}).dt \\\ dx = \dfrac{1}{{t + \sqrt {1 + {t^2}} }}(1 + \dfrac{t}{{\sqrt {1 + {t^2}} }}).dt \\\

Now take L.C.M from the above equation and simplifying it as,

dx=1t+1+t2(1+t21+t2+t1+t2).dt dx=1t+1+t2(1+t2+t1+t2).dt  dx = \dfrac{1}{{t + \sqrt {1 + {t^2}} }}(\dfrac{{\sqrt {1 + {t^2}} }}{{\sqrt {1 + {t^2}} }} + \dfrac{t}{{\sqrt {1 + {t^2}} }}).dt \\\ dx = \dfrac{1}{{t + \sqrt {1 + {t^2}} }}(\dfrac{{\sqrt {1 + {t^2}} + t}}{{\sqrt {1 + {t^2}} }}).dt \\\

As cancelling the common terms, we get,
dx=(11+t2).dtdx = (\dfrac{1}{{\sqrt {1 + {t^2}} }}).dt
Hence, replacing all the substitution in the above integration log(t+1+t2)1+t2.dt\int {\dfrac{{\log (t + \sqrt {1 + {t^2}} )}}{{\sqrt {1 + {t^2}} }}} .dt, we get,
I=x.dxI = \int x .dx
Hence, integrate the above term using general formula as,
I=x22+c\Rightarrow I = \dfrac{{{x^2}}}{2} + c
And on comparing it with R.H.S we can conclude that
I=x22+c=12(g(t))2+c\Rightarrow I = \dfrac{{{x^2}}}{2} + c = \dfrac{1}{2}{(g(t))^2} + c
So, the value of g(t)g\left( t \right) is given as,
g(t)=x=log(t+1+t2)\Rightarrow g(t) = x = \log (t + \sqrt {1 + {t^2}} )
Hence, now calculate the value of g(2)g(2) as replacing the value of t in the above equation,

g(2)=log(2+1+22) g(2)=log(2+5)  \Rightarrow g(2) = \log (2 + \sqrt {1 + {2^2}} ) \\\ \Rightarrow g(2) = \log (2 + \sqrt 5 ) \\\

Hence, option (C) is our required correct answer.

Note: The substitution method is used when an integral contains some function and its derivative. In this case, we can set u equal to the function and rewrite the integral in terms of the new variable u. This makes the integral easier to solve.
Also apply the differentiation properly as d(logx)dx=1x\dfrac{{d(\log x)}}{{dx}} = \dfrac{1}{x} and properly apply chain rule while further differentiation our given terms as d(x)dx=12x\dfrac{{d(\sqrt x )}}{{dx}} = \dfrac{1}{{2\sqrt x }}.