Solveeit Logo

Question

Question: If \[\int {\dfrac{{{{\left( {\sqrt x } \right)}^5}}}{{{{\left( {\sqrt x } \right)}^7} + {x^6}}}dx} =...

If (x)5(x)7+x6dx=λln(xa1+xa)+c\int {\dfrac{{{{\left( {\sqrt x } \right)}^5}}}{{{{\left( {\sqrt x } \right)}^7} + {x^6}}}dx} = \lambda \ln \left( {\dfrac{{{x^a}}}{{1 + {x^a}}}} \right) + c then a+λa + \lambda is
a. =2 = 2
b. <2 < 2
c. >2 > 2
d. =1 = 1

Explanation

Solution

Hint : Here in this question we have to simplify the given function and then we have to integrate the given function. Hence, we obtain the solution, then we have to compare the RHS of the question and obtain a solution then we will obtain the unknown parameter aa and λ\lambda .

Complete step-by-step answer :
Consider the given function I=(x)5(x)7+x6dxI = \int {\dfrac{{{{\left( {\sqrt x } \right)}^5}}}{{{{\left( {\sqrt x } \right)}^7} + {x^6}}}dx} . The square root can be written in the terms of power so we can rewrite the given function as,
x52x72+x6dx\Rightarrow \int {\dfrac{{{x^{\dfrac{5}{2}}}}}{{{x^{\dfrac{7}{2}}} + {x^6}}}dx}
Divide both numerator and denominator by x52{x^{\dfrac{5}{2}}} , so we have
x52x52x72+x6x52dx\Rightarrow \int {\dfrac{{\dfrac{{{x^{\dfrac{5}{2}}}}}{{{x^{\dfrac{5}{2}}}}}}}{{\dfrac{{{x^{\dfrac{7}{2}}} + {x^6}}}{{{x^{\dfrac{5}{2}}}}}}}dx}
x52x52x72x52+x6x52dx\Rightarrow \int {\dfrac{{\dfrac{{{x^{\dfrac{5}{2}}}}}{{{x^{\dfrac{5}{2}}}}}}}{{\dfrac{{{x^{\dfrac{7}{2}}}}}{{{x^{\dfrac{5}{2}}}}} + \dfrac{{{x^6}}}{{{x^{\dfrac{5}{2}}}}}}}dx}
On further simplification
x5252x7252+x652dx\Rightarrow \int {\dfrac{{{x^{\dfrac{5}{2} - \dfrac{5}{2}}}}}{{{x^{\dfrac{7}{2} - \dfrac{5}{2}}} + {x^{6 - \dfrac{5}{2}}}}}dx}
x0x22+x72dx\Rightarrow \int {\dfrac{{{x^0}}}{{{x^{\dfrac{2}{2}}} + {x^{\dfrac{7}{2}}}}}dx}
We know that any element power of zero is one
dxx+x72\Rightarrow \int {\dfrac{{dx}}{{x + {x^{\dfrac{7}{2}}}}}}
Taking x12{x^{\dfrac{1}{2}}} as common in the denominator
dxx12(x12+x3)\Rightarrow \int {\dfrac{{dx}}{{{x^{\dfrac{1}{2}}}({x^{\dfrac{1}{2}}} + {x^3})}}}
Substitute x12=t{x^{\dfrac{1}{2}}} = t
On differentiating the above function w.r.t, x we have
ddxx12=dtdx\dfrac{d}{{dx}}{x^{\dfrac{1}{2}}} = \dfrac{{dt}}{{dx}}
12x12dx=dt\Rightarrow \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}dx = dt
1x12dx=2dt\Rightarrow \dfrac{1}{{{x^{\dfrac{1}{2}}}}}dx = 2dt and we have x12=t{x^{\dfrac{1}{2}}} = t and x3=t6{x^3} = {t^6}
So I can be written as 2dt(t+t6)\Rightarrow \int {\dfrac{{2dt}}{{(t + {t^6})}}}
Taking t6{t^6} as common in the denominator we have
2dtt6(1+1t5)\Rightarrow 2\int {\dfrac{{dt}}{{{t^6}(1 + \dfrac{1}{{{t^5}}})}}}
Now substitute 1+1t5=u1 + \dfrac{1}{{{t^5}}} = u
On differentiating the above function w.r.t, t we have
ddt(1+1t5)=dudt\Rightarrow \dfrac{d}{{dt}}(1 + \dfrac{1}{{{t^5}}}) = \dfrac{{du}}{{dt}}
ddt(1)+ddt(1t5)=dudt\Rightarrow \dfrac{d}{{dt}}(1) + \dfrac{d}{{dt}}\left( {\dfrac{1}{{{t^5}}}} \right) = \dfrac{{du}}{{dt}}

5t6dt=du dtt6=du5  \Rightarrow \dfrac{{ - 5}}{{{t^6}}}dt = du \\\ \Rightarrow \dfrac{{dt}}{{{t^6}}} = - \dfrac{{du}}{5} \\\

So we have I=25duuI = - \dfrac{2}{5}\int {\dfrac{{du}}{u}}
I=25ln(u)+c\Rightarrow I = - \dfrac{2}{5}\ln (u) + c
Substituting the value of u we have
I=25ln(1+1t5)+c\Rightarrow I = - \dfrac{2}{5}\ln \left( {1 + \dfrac{1}{{{t^5}}}} \right) + c
And substituting the value of t and simplifying we have,
I=25ln(1+1x12)+c\Rightarrow I = - \dfrac{2}{5}\ln \left( {1 + \dfrac{1}{{{x^{\dfrac{1}{2}}}}}} \right) + c
I=25ln(x12+1x12)+c\Rightarrow I = - \dfrac{2}{5}\ln \left( {\dfrac{{{x^{\dfrac{1}{2}}} + 1}}{{{x^{\dfrac{1}{2}}}}}} \right) + c
From the question we have (x)5(x)7+x6dx=λln(xa1+xa)+c\int {\dfrac{{{{\left( {\sqrt x } \right)}^5}}}{{{{\left( {\sqrt x } \right)}^7} + {x^6}}}dx} = \lambda \ln \left( {\dfrac{{{x^a}}}{{1 + {x^a}}}} \right) + c and we got the solution I=25ln(x12+1x12)+c \Rightarrow I = - \dfrac{2}{5}\ln \left( {\dfrac{{{x^{\dfrac{1}{2}}} + 1}}{{{x^{\dfrac{1}{2}}}}}} \right) + c by comparing these two we can rewrite this as
λln(xa1+xa)+c=25ln(x12+1x12)+c\lambda \ln \left( {\dfrac{{{x^a}}}{{1 + {x^a}}}} \right) + c = - \dfrac{2}{5}\ln \left( {\dfrac{{{x^{\dfrac{1}{2}}} + 1}}{{{x^{\dfrac{1}{2}}}}}} \right) + c
Therefore we have the value for λ\lambda and aa that is λ=25\lambda = - \dfrac{2}{5} and a=12a = \dfrac{1}{2}
Now we have to find the value of a+λa + \lambda
By adding we obtain the solution as 12+(25)\dfrac{1}{2} + \left( { - \dfrac{2}{5}} \right)
1225\Rightarrow \dfrac{1}{2} - \dfrac{2}{5}
On simplification we have
5210=310\Rightarrow \dfrac{{5 - 2}}{{10}} = \dfrac{3}{{10}}
Hence the solution will be less than 2 therefore the option b is the correct one.
So, the correct answer is “Option B”.

Note : By simplifying the question using the substitution we can integrate the given function easily. If we apply integration directly it may be complicated to solve further. So simplification is needed. We must know the differentiation formulas. The law of exponents or indices are applied to solve this problem.