Solveeit Logo

Question

Question: If \[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf(x){{\left( 1+{{x}^{...

If dxx3(1+x6)23=xf(x)(1+x6)13+c\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf(x){{\left( 1+{{x}^{^{6}}} \right)}^{^{\dfrac{1}{3}}}}+c where cc is a constant of integration, then the function f(x)f\left( x \right) is equal to _____
(a) 16x3-\dfrac{1}{6{{x}^{3}}}
(b) 3x2\dfrac{3}{{{x}^{2}}}
(c) 12x2-\dfrac{1}{2{{x}^{2}}}
(d) 12x3-\dfrac{1}{2{{x}^{3}}}

Explanation

Solution

To solve this question we have to make some arrangement of terms and use substitution as-
dxx3(1+x6)23=dxx3(x6)23(1+1x6)23\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}=\int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}}
=dxx3.x4(1+1x6)23=dxx7(1+1x6)23=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}
Put 1+1x6=t31+\dfrac{1}{{{x}^{6}}}={{t}^{3}} .

Complete step by step answer:
Let us consider
I=dxx3(1+x6)23I=\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}
Now, let us take x6{{x}^{6}} common from (1+x6)23{{(1+{{x}^{6}})}^{\dfrac{2}{3}}} . Then we will have
I=dxx3.(x6)23(1+1x6)23I=\int{\dfrac{dx}{{{x}^{3}}.{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}
I=dxx3.x4(1+1x6)23\Rightarrow I=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}
I=dxx7(1+1x6)23..............(i)\Rightarrow I=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}..............(i)
Let 1+1x6=t31+\dfrac{1}{{{x}^{6}}}={{t}^{3}} .
Differentiating, we get

& \text{ }0+\left( -\dfrac{6}{{{x}^{7}}} \right)dx=3{{t}^{2}}dt \\\ & \Rightarrow -\dfrac{6}{{{x}^{7}}}dx=3{{t}^{2}}dt \\\ & \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{3}{6}{{t}^{2}}dt \\\ & \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{1}{2}{{t}^{2}}dt \\\ \end{aligned}$$ Now we can write equation $(i)$ as $I=\int{-\dfrac{1}{2}\dfrac{{{t}^{2}}dt}{{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}}$ $$\Rightarrow I=-\dfrac{1}{2}\int{\dfrac{{{t}^{2}}dt}{{{t}^{2}}}}$$ $\Rightarrow I=-\dfrac{1}{2}\int{dt}$ We know that $\int{dz=z+c}$ , where $c$ is a constant of integration. $\therefore I=-\dfrac{1}{2}t+c$ As we have put ${{t}^{3}}=\left( 1+\dfrac{1}{{{x}^{6}}} \right)$ , therefore $I=-\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c$ Now it is given that $$\begin{aligned} & \text{ }\int{\dfrac{dx}{{{x}^{3}}{{(1+{{x}^{6}})}^{\dfrac{2}{3}}}}=xf(x)}{{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\\ & \Rightarrow I=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\\ & \Rightarrow -\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\\ & \Rightarrow -\dfrac{1}{2}\dfrac{{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}}{{{({{x}^{6}})}^{\dfrac{1}{3}}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\\ & \Rightarrow -\dfrac{1}{2}\dfrac{1}{{{x}^{2}}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\\ \end{aligned}$$ Comparing both sides, we get $f(x)=-\dfrac{1}{2{{x}^{3}}}$ **So, the correct answer is “Option D”.** **Note:** The student must notice about putting the value of ${{t}^{3}}$ that we will put $$\left( 1+\dfrac{1}{{{x}^{6}}} \right)={{t}^{3}}$$ , not $${{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}={{t}^{3}}$$ . Then you might get wrong or confused in finding the solution. Also, you must remember the integration of elementary functions.