Solveeit Logo

Question

Question: If \(\int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}=f\left( x \right){{\le...

If dxx2(1+x4)34=f(x)(1+x4)2+C\int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}=f\left( x \right){{\left( 1+{{x}^{4}} \right)}^{2}}+C where, CC is a constant of integration, then find the function f(x)f\left( x \right). $$$$

Explanation

Solution

We proceed from left hand side and take x4{{x}^{4}}common from the bracket. We substitute t=1x4+1t=\dfrac{1}{{{x}^{4}}}+1 and find dxdx in terms of t,dtt,dt also substituted in the integrand. We integrate with respect to tt and put back tt in terms of xx. We multiply and divide xxand then compare the resultant expression with expression at the right hand side to get f(x)f\left( x \right). $$$$

Complete step by step answer:
We are given in the question an equation whose left hand side has an integral and the right hand side has functional equation as
dxx2(1+x4)34=f(x)(1+x4)2+C\int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}=f\left( x \right){{\left( 1+{{x}^{4}} \right)}^{2}}+C
If we shall integrate the left hand side and try to express the result similar to the expression at the right hand side we may get the required function f(x)f\left( x \right). We proceed from left hand side,
dxx2(1+x4)34\Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}
We take x4{{x}^{4}} common from the bracket in the denominator to get,

& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( {{x}^{4}}\left( \dfrac{1}{{{x}^{4}}}+1 \right) \right)}^{\dfrac{3}{4}}}}} \\\ & \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( {{x}^{4}} \right)}^{\dfrac{3}{4}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\\ \end{aligned}$$ We use the exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=4,n=\dfrac{3}{4}$ in the above step to have $$\begin{aligned} & \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{x}^{4\times \dfrac{3}{4}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\\ & \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{x}^{3}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\\ \end{aligned}$$ We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=3,n=4$ in the above step to have, $$\begin{aligned} & \Rightarrow \int{\dfrac{dx}{{{x}^{5}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\\ & \Rightarrow \int{\dfrac{dx}{{{x}^{5}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\\ & \Rightarrow \int{\dfrac{1}{{{x}^{5}}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{-\dfrac{3}{4}}}dx.........\left( 1 \right) \\\ \end{aligned}$$ We can substitute $t=\dfrac{1}{{{x}^{4}}}+1$ in the above step since integration is independent of change in variable and for that we also need $dx$ and rest of the expression in $x$ in terms of $t$. We differentiate $t=\dfrac{1}{{{x}^{4}}}+1$ both side with respect to $x$ to have, $$\begin{aligned} & \dfrac{d}{dx}t=\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{4}}}+1 \right)=\dfrac{d}{dx}\left( {{x}^{-4}}+1 \right) \\\ & \Rightarrow \dfrac{dt}{dx}=-4{{x}^{-4-1}}+0 \\\ & \Rightarrow dx=\dfrac{dt}{-4{{x}^{-5}}} \\\ \end{aligned}$$ We put $t=\dfrac{1}{{{x}^{4}}}+1$ and $dx=\dfrac{dt}{-4{{x}^{-5}}}$ in (1) to have $$\begin{aligned} & \Rightarrow \int{\dfrac{1}{{{x}^{5}}}\times t\times \dfrac{dt}{-4{{x}^{-5}}}} \\\ & \Rightarrow \dfrac{-1}{4}\int{\dfrac{tdt}{{{x}^{-5}}{{x}^{5}}}} \\\ \end{aligned}$$ We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=-5,n=5$ in the above step to have $$\begin{aligned} & \Rightarrow \dfrac{-1}{4}\int{\dfrac{tdt}{{{x}^{-5+5}}}} \\\ & \Rightarrow \dfrac{-1}{4}\int{tdt} \\\ & \Rightarrow \dfrac{-1}{4}\dfrac{{{t}^{2}}}{2}+C \\\ & \Rightarrow \dfrac{-1}{8}{{t}^{2}}+C \\\ \end{aligned}$$ We put $t=\dfrac{1}{{{x}^{4}}}+1$ in the above step to have, $$\begin{aligned} & \Rightarrow \dfrac{-1}{8}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{2}}+C \\\ & \Rightarrow \dfrac{-1}{8}{{\left( \dfrac{{{x}^{4}}+1}{{{x}^{4}}} \right)}^{2}}+C \\\ & \Rightarrow \dfrac{-1}{8}\dfrac{{{\left( {{x}^{4}}+1 \right)}^{2}}}{{{\left( {{x}^{4}} \right)}^{2}}}+C \\\ \end{aligned}$$ We use exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=4,n=2$ in the above step to have $$\Rightarrow \dfrac{-1}{8{{x}^{8}}}{{\left( {{x}^{4}}+1 \right)}^{2}}+C=f\left( x \right){{\left( 1+{{x}^{4}} \right)}^{2}}+C$$ We compare both side and have the required function as $f\left( x \right)=\dfrac{-1}{8{{x}^{8}}}$. $$$$ **Note:** We note that the function is not defined for $x=0$ and the question assumes that. The method of integration we used here is called t-substitution or integration by substitution. We have also used the formula standard integral $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1},n\ne -1$ and the standard differentiation formula $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ frequently in this problem.