Solveeit Logo

Question

Question: If \(\int {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2\sin 2x} }}} = {\left( {\tan x} \right)^A} + C{\left( {...

If dxcos3x2sin2x=(tanx)A+C(tanx)B+k\int {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2\sin 2x} }}} = {\left( {\tan x} \right)^A} + C{\left( {\tan x} \right)^B} + k, where kk is constant of integration, then find the value ofA+B+CA + B + C.
(1) 215\dfrac{{21}}{5}
(2) 2110\dfrac{{21}}{{10}}
(3) 165\dfrac{{16}}{5}
(4) 710\dfrac{7}{{10}}

Explanation

Solution

Using the trigonometric identity of double angles, transform the integral in form of secant and tangent function. Now use the identity sec2x=tan2x+1{\sec ^2}x = {\tan ^2}x + 1to transform the secant squared function into a tangent function. Take a proper substitution as tanx=msec2xdx=dm\tan x = m \Rightarrow {\sec ^2}xdx = dm and further solve the integral to obtain an expression as required in the question.

Complete step-by-step answer:
Here we have to integrate the given integral and compare our result with (tanx)A+C(tanx)B+k{\left( {\tan x} \right)^A} + C{\left( {\tan x} \right)^B} + k to find the value of A, B and C
Let’s get started with the solution of the given integral. We can start with simplifying the radical using the double-angle formula, i.e. sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
dxcos3x2sin2x=dxcos3x2×2sinxcosx=dx2cos3xsinxcosx\Rightarrow \int {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2\sin 2x} }}} = \int {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2 \times 2\sin x\cos x} }}} = \int {\dfrac{{dx}}{{2{{\cos }^3}x\sqrt {\sin x\cos x} }}}

Now in the denominator, multiply and divide with cosx\cos x, which will give:
dx2cos3xsinxcosx=dxcosx×2cos3xsinxcosxcosx\Rightarrow \int {\dfrac{{dx}}{{2{{\cos }^3}x\sqrt {\sin x\cos x} }}} = \int {\dfrac{{dx}}{{\dfrac{{\cos x \times 2{{\cos }^3}x\sqrt {\sin x\cos x} }}{{\cos x}}}}}
We can take this cosx\cos x inside the radical and then transform it further as:
dxcosx×2cos3xsinxcosxcosx=dx2cos4xsinxcosxcos2x=dx2cos4xsinxcosx\Rightarrow \int {\dfrac{{dx}}{{\dfrac{{\cos x \times 2{{\cos }^3}x\sqrt {\sin x\cos x} }}{{\cos x}}}}} = \int {\dfrac{{dx}}{{2{{\cos }^4}x\sqrt {\dfrac{{\sin x\cos x}}{{{{\cos }^2}x}}} }}} = \int {\dfrac{{dx}}{{2{{\cos }^4}x\sqrt {\dfrac{{\sin x}}{{\cos x}}} }}}
Since we know that sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x and the reciprocal of cosx\cos x is secx\sec x which can be used in the above integral transforming it further: 1cosx=secx1cos4x=sec2x×sec2x\dfrac{1}{{\cos x}} = \sec x \Rightarrow \dfrac{1}{{{{\cos }^4}x}} = {\sec ^2}x \times {\sec ^2}x
dx2cos4xsinxcosx=sec2x×sec2xdx2tanx\Rightarrow \int {\dfrac{{dx}}{{2{{\cos }^4}x\sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} = \int {\dfrac{{{{\sec }^2}x \times {{\sec }^2}xdx}}{{2\sqrt {\tan x} }}}
Now, let’s use the trigonometric identity sec2x=tan2x+1{\sec ^2}x = {\tan ^2}x + 1 in the numerator and utilize the method of substitution, i.e. assume that tanx=md(tanx)=dmsec2xdx=dm\tan x = m \Rightarrow d\left( {\tan x} \right) = dm \Rightarrow {\sec ^2}xdx = dm
Therefore, we get the integral as:sec2x×sec2xdx2tanx=(tan2x+1)sec2xdx2tanx=(m2+1)dm2m\int {\dfrac{{{{\sec }^2}x \times {{\sec }^2}xdx}}{{2\sqrt {\tan x} }}} = \int {\dfrac{{\left( {{{\tan }^2}x + 1} \right){{\sec }^2}xdx}}{{2\sqrt {\tan x} }}} = \int {\dfrac{{\left( {{m^2} + 1} \right)dm}}{{2\sqrt m }}}
So, now we get an integral with the variable as m'm'and it can be further split into two parts:
(m2+1)dm2m=m22mdm+12mdm=12m212dm+12m12dm\Rightarrow \int {\dfrac{{\left( {{m^2} + 1} \right)dm}}{{2\sqrt m }}} = \int {\dfrac{{{m^2}}}{{2\sqrt m }}dm + \int {\dfrac{1}{{2\sqrt m }}dm = } } \dfrac{1}{2}\int {{m^{2 - \dfrac{1}{2}}}dm + \dfrac{1}{2}\int {{m^{\dfrac{{ - 1}}{2}}}dm} }
Now, using some basic integrals abda=ab+1b+1+C\int {{a^b}da = \dfrac{{{a^{b + 1}}}}{{b + 1}}} + C in the above two integrals, we can further evaluate them as:
12m212dm+12m12dm=12m32dm+12m12dm=12m32+1(32+1)+12m12+1(12+1)+C\Rightarrow \dfrac{1}{2}\int {{m^{2 - \dfrac{1}{2}}}dm + \dfrac{1}{2}\int {{m^{\dfrac{{ - 1}}{2}}}dm} } = \dfrac{1}{2}\int {{m^{\dfrac{3}{2}}}dm + \dfrac{1}{2}\int {{m^{\dfrac{{ - 1}}{2}}}dm} } = \dfrac{1}{2}\dfrac{{{m^{\dfrac{3}{2} + 1}}}}{{\left( {\dfrac{3}{2} + 1} \right)}} + \dfrac{1}{2}\dfrac{{{m^{\dfrac{{ - 1}}{2} + 1}}}}{{\left( {\dfrac{{ - 1}}{2} + 1} \right)}} + C
12m32+1(32+1)+12m12+1(12+1)+C=12×25m52+12×2m12+C=15m52+m12+C\Rightarrow \dfrac{1}{2}\dfrac{{{m^{\dfrac{3}{2} + 1}}}}{{\left( {\dfrac{3}{2} + 1} \right)}} + \dfrac{1}{2}\dfrac{{{m^{\dfrac{{ - 1}}{2} + 1}}}}{{\left( {\dfrac{{ - 1}}{2} + 1} \right)}} + C = \dfrac{1}{2} \times \dfrac{2}{5}{m^{\dfrac{5}{2}}} + \dfrac{1}{2} \times 2{m^{\dfrac{1}{2}}} + C = \dfrac{1}{5}{m^{\dfrac{5}{2}}} + {m^{\dfrac{1}{2}}} + C
Hence, we got the integral solved in a variable mm; let’s substitute the assumed value tanx=m\tan x = m in the result.
15m52+m12+C=15(tanx)52+(tanx)12+k...(1)\Rightarrow \dfrac{1}{5}{m^{\dfrac{5}{2}}} + {m^{\dfrac{1}{2}}} + C = \dfrac{1}{5}{\left( {\tan x} \right)^{\dfrac{5}{2}}} + {\left( {\tan x} \right)^{\dfrac{1}{2}}} + k…………………...(1)
But we need to compare the result of the integration with (tanx)A+C(tanx)B+k{\left( {\tan x} \right)^A} + C{\left( {\tan x} \right)^B} + k
\Rightarrow If (tanx)A+C(tanx)B+k{\left( {\tan x} \right)^A} + C{\left( {\tan x} \right)^B} + k is equal to 15(tanx)52+(tanx)12+k\dfrac{1}{5}{\left( {\tan x} \right)^{\dfrac{5}{2}}} + {\left( {\tan x} \right)^{\dfrac{1}{2}}} + k, then the coefficient of the terms must also be the same in each of the expressions.
Therefore, we can see that A=12,B=52A = \dfrac{1}{2},B = \dfrac{5}{2} and C=15C = \dfrac{1}{5}
Hence, the required value for the expression A+B+C=12+52+15=62+15=3+15=165A + B + C = \dfrac{1}{2} + \dfrac{5}{2} + \dfrac{1}{5} = \dfrac{6}{2} + \dfrac{1}{5} = 3 + \dfrac{1}{5} = \dfrac{{16}}{5}

So, the correct answer is “Option C”.

Note: Always solve the integrals step by step. Make the use of trigonometric identities wisely. Be careful while using the substitution method in the integrals, as it requires you to differentiate both sides of the assumed value and then change the variable in the whole integral. The substitution was an important part of this solution.