Solveeit Logo

Question

Question: If \( \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx} \) is equal to A. \( \dfrac{{{e}^{x}}\cos x}{\si...

If cosx1sinx+1exdx\int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx} is equal to
A. excosxsinx+1+c\dfrac{{{e}^{x}}\cos x}{\sin x+1}+c
B. exsinxsinx+1+c-\dfrac{{{e}^{x}}\sin x}{\sin x+1}+c
C. exsinx+1+c\dfrac{-{{e}^{x}}}{\sin x+1}+c
D. excosxsinx+1+c-\dfrac{{{e}^{x}}\cos x}{\sin x+1}+c

Explanation

Solution

Hint : We first discuss the integration by parts method. Integration by parts method is usually used for the multiplication of the functions and their integration. We take two arbitrary functions to express the theorem. We take the u=cosxsinx+1,v=exu=\dfrac{\cos x}{\sin x+1},v={{e}^{x}} for our integration x2lnxdx\int{{{x}^{2}}\ln xdx} .

Complete step-by-step answer :
We break the negative part in the numerator of cosx1sinx+1exdx\int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx} and get
cosx1sinx+1exdx=excosxsinx+1dxexdxsinx+1\int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\int{\dfrac{{{e}^{x}}\cos x}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}} .
We now apply by-parts on the integral form of excosxdxsinx+1\int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}} .
Let’s assume f(x)=g(x)h(x)f\left( x \right)=g\left( x \right)h\left( x \right) . We need to find the integration of f(x)dx=g(x)h(x)dx\int{f\left( x \right)dx}=\int{g\left( x \right)h\left( x \right)dx} .
We take u=g(x),v=h(x)u=g\left( x \right),v=h\left( x \right) . This gives f(x)dx=uvdx\int{f\left( x \right)dx}=\int{uvdx} .
The theorem of integration by parts gives uvdx=uvdx(dudxvdx)dx\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx} .
For our integration excosxdxsinx+1\int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}} , we take u=cosxsinx+1,v=exu=\dfrac{\cos x}{\sin x+1},v={{e}^{x}} .
Now we complete the integration excosxdxsinx+1=cosxsinx+1exdx(d(cosxsinx+1)dxexdx)dx\int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}}=\dfrac{\cos x}{\sin x+1}\int{{{e}^{x}}dx}-\int{\left( \dfrac{d\left( \dfrac{\cos x}{\sin x+1} \right)}{dx}\int{{{e}^{x}}dx} \right)dx}.
The differential part ddx(cosxsinx+1)=(sinx+1)sinxcos2x(sinx+1)2=sinxsin2xcos2x(sinx+1)2=1(sinx+1)\dfrac{d}{dx}\left( \dfrac{\cos x}{\sin x+1} \right)=\dfrac{-\left( \sin x+1 \right)\sin x-{{\cos }^{2}}x}{{{\left( \sin x+1 \right)}^{2}}}=\dfrac{-\sin x-{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\left( \sin x+1 \right)}^{2}}}=\dfrac{-1}{\left( \sin x+1 \right)}
We apply these formulas to complete the integration and get
excosxdxsinx+1=excosxsinx+1+exsinx+1dx\int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}}=\dfrac{{{e}^{x}}\cos x}{\sin x+1}+\int{\dfrac{{{e}^{x}}}{\sin x+1}dx}.
The final form becomes
cosx1sinx+1exdx=excosxsinx+1dxexdxsinx+1 cosx1sinx+1exdx=excosxsinx+1+exsinx+1dxexdxsinx+1=excosxsinx+1 \begin{aligned} & \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\int{\dfrac{{{e}^{x}}\cos x}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}} \\\ & \Rightarrow \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\dfrac{{{e}^{x}}\cos x}{\sin x+1}+\int{\dfrac{{{e}^{x}}}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}}=\dfrac{{{e}^{x}}\cos x}{\sin x+1} \\\ \end{aligned}
The correct option is A.
So, the correct answer is “Option A”.

Note : In case one of two functions are missing and we need to form the by parts method, we will take the multiplying constant 1 as the second function.
For example: if we need to find lnxdx\int{\ln xdx}, we have only one function. So, we take constant 1 as the second function where u=lnx,v=1u=\ln x,v=1 . But we need to remember that we won’t perform by parts by taking u=1u=1 .