Question
Question: If \(\int{\dfrac{3{{z}^{3}}-8z+5}{\sqrt{{{z}^{2}}-4z-7}}}dz=\left( {{z}^{2}}+az+36 \right)\sqrt{{{z}...
If ∫z2−4z−73z3−8z+5dz=(z2+az+36)z2−4z−7+blogz−2+z2−4z−7+C, where a,b∈I and C is the integration constant then
A. a>b
B. a<b
C. a+b=117
D. Exactly one out of a or b is a prime number.
Solution
We first take the L.H.S part and do the integration. While integrating we will use two substitutions, one is z−2=u and u=11secv . After substituting each value, we have an equation consisting of multiple terms in integration. We will find the integration of each term individually using some integration formulas and substituting necessary values where they are required. After doing integration for all the individual terms we will add them to get the final integral value of given expression ∫z2−4z−73z3−8z+5dz and then we will compare our result of integration with the R.H.S, then we will get the values of a,b.
**
**
Complete step by step answer:
Given that,
∫z2−4z−73z3−8z+5dz=(z2+az+36)z2−4z−7+blogz−2+z2−4z−7+C
Take L.H.S from the above given equation, then
L.H.S=∫z2−4z−73z3−8z+5dz.....(i)
Simplify the expression z2−4z−7 which is in denominator, then
z2−4z−7=z2−2.2z+22−22−7
=z2−2(2)(z)+22−4−7
=(z−2)2−11
Let us take the substitution of z2−4z−7=(z−2)2−11 and z−2=u then dz=du in equation (i)
∴∫z2−4z−73z3−8z+5dz=∫u2−113(u+2)3−8(u+2)+5du
=∫u2−113(u+2)3−8u−16+5du
=∫u2−113(u+2)3−8u−11du
Now take the substitution u=11secv then v=sec−1(11u) and du=11secvtanv.dvin the above equation, then we have
∫u2−113(u+2)3−8u−11du=∫(11sec)2−113(11secv+2)3−8(11secv)−11.(11secvtanv.dv)
=∫11(sec2−1)3(11secv+2)3−811secv−11.(11secvtanv.dv)
=∫11tanv3(11secv+2)3−811secv−11.(11secvtanv.dv) [∵sec2x−tan2x=1]
=∫(3secv(11secv+2)3−811sec2v−11secv)dv
=3∫secv(11secv+2)3.dv−811∫sec2v.dv−11∫secv.dv....(ii)
Finding the integrals of secv(11sec+2)3 , sec2v individually, then
∫secv(11secv+2)3dv=∫secv[(11secv)3+23+3(11secv)(2)(11secv+2)]dv
=∫secv1123sec3v+8+611secv(11secv+2)
=∫secv1123sec3v+8+6.11sec2v+1211secvdv
=∫secv1123sec3v+66sec2v+1211secv+8dv
=∫1123sec4v+66sec3v+1211sec2v+8secvdv....(iii)
Now the values of ∫sec4vdv,∫sec3vdv,∫sec2dv are
For finding the value of ∫sec2vdv consider the equation dxd(tanx+C), we have
dxd(tanx+C)=dxd(tanx)+dxd(C)
dxd(tanx+C)=sec2x+0
d(tanx+C)=sec2xdx
∫sec2xdx=tanx+C.....(a)
For finding the value of ∫sec3xdx use the integral by part then p=secx,dq=sec2x,dp=secxtanxdx,q=tanx
Substitute the above values in pq−∫qdp, then
∫sec3xdx=secxtanx−∫tan2xsecxdx
=secxtanx−∫(sec2x−1)secxdx
=secxtanx−∫sec3xdx+∫secxdx
∫sec3xdx+∫sec3xdx=secxtanx+∫secxdx
2∫sec3xdx=secxtanx+log∣secx+tanx∣
∫sec3xdx=21secxtanx+21log∣secx+tanx∣+C....(b)
Finding the value of ∫sec4xdx.
∫sec4xdx=∫sec2x(sec2x)dx
=∫sec2x(1+tan2x)dx
Let us substitute t=tanx and dt=sec2xdx in above equation, then
∫sec4xdx=∫(1+t2)dt
=t+3t3+C
=tanx+3tan3x+C....(c)
From equations a,b,c we have values of ∫sec4vdv,∫sec3vdv,∫sec2dv, so substituting those values in equation (iii) then we have
∫secv(11secv+2)3dv=1123∫sec4vdv+66∫sec3vdv+1211∫sec2vdv+8∫secvdv
=1123[tanv+3tan3v]+66[21(secvtanv+log∣secv+tanv∣)]+1211(tanv)+8log∣secv+tanv∣+C
=1123tanv+31123tan3v+33secvtanv+33log∣secv+tanv∣+1211tanv+8log∣secv+tanv∣+C
=31123tan3v+1211tanv+(11)3tanv+33secv.tanv+41log∣secv+tanv∣+C
=31123tan3v+11[12+(11)2]tanv+33secv.tanv+41log∣secv+tanv∣+C
=31123tan3v+2311tanv+33secv.tanv+41log∣secv+tanv∣+C
Substituting the above value in equation (ii), then we have
∫u2−113(u+2)3−8u−11=3∫secv(11secv+2)3dv−811∫sec2vdv−11∫secvdv
=331123tan3v+2311tanv+33secv.tanv+41log∣secv+tanv∣−811tanv−11log∣secv+tanv∣+C
=1123tan3v+6911tanv+99secv.tanv+123log∣secv+tanv∣−811tanv−11log∣secv+tanv∣+C
=1123tan3v+6111tanv+99secv.tanv+112log∣secv+tanv∣+C
But we have the value of v as sec−1(11u) i.e. secv=11u hence tanv=sec2v−1=11u2−1, no the above equation is modified as
∫u2−113(u+2)3−8u−11=1123(11u2−1)+6111(11u2−1)+99(11u)(11u2−1)+112log(11u)+(11u2−1)+C
Again, we have u=z−2 hence the above equation is converted as
∫u2−113(u+2)3−8u−11=112311(z−2)2−13+611111(z−2)2−1+99(11z−2)11(z−2)2−1+112log(11z−2)+11(z−2)2−1+C
=1123(11(z−2)2−11)23+6111(11(z−2)2−11)+99(11z−2)(11(z−2)2−11)+112log(11z−2)+(11(z−2)2−11)+C
=(z2−4z−7)23+61(z2−4z−7)+9(z−2)(z2−4z−7)+112log(11z−2)+11z2−4z−7+C
=(z2−4z−7)3+61(z2−4z−7)+9(z−2)(z2−4z−7)+112logz−2+z2−4z−7+C
=(z2−4z−7)[(z2−4z−7)2+61+9z−18]+112logz−2+z2−4z−7+C
=(z2−4z−7)[z2−4z−7+9z+43]+112logz−2+z2−4z−7+C
=(z2−4z−7)(z2+5z+36)+112logz−2+z2−4z−7+C
Now equating the L.H.S=R.H.S we have
(z2+5z+36)(z2−4z−7)+112logz−2+z2−4z−7+C=(z2+az+36)z2−4z−7+blogz−2+z2−4z−7+C
From above equation we have
a=5 , b=112 hence a+b=117 and a<b and Exactly one out of a or b is a prime number. Here a is prime number
So, the correct answer is “Option B,C and D”.
Note: In this problem we all need to expand the expressions using algebraic formulas carefully and while finding the integration of the equations having multiple terms it is advisable to split the terms and integrate them individually and then substitute them in the integration equation.