Solveeit Logo

Question

Question: If \(\int{\dfrac{3{{z}^{3}}-8z+5}{\sqrt{{{z}^{2}}-4z-7}}}dz=\left( {{z}^{2}}+az+36 \right)\sqrt{{{z}...

If 3z38z+5z24z7dz=(z2+az+36)z24z7+blogz2+z24z7+C\int{\dfrac{3{{z}^{3}}-8z+5}{\sqrt{{{z}^{2}}-4z-7}}}dz=\left( {{z}^{2}}+az+36 \right)\sqrt{{{z}^{2}}-4z-7}+b\log \left| z-2+\sqrt{{{z}^{2}}-4z-7} \right|+C, where a,bIa,b\in I and CC is the integration constant then

A. a>ba > b

B. a<ba < b

C. a+b=117a+b=117

D. Exactly one out of aa or bb is a prime number.

Explanation

Solution

We first take the L.H.S part and do the integration. While integrating we will use two substitutions, one is z2=uz-2=u and u=11secvu=\sqrt{11}\sec v . After substituting each value, we have an equation consisting of multiple terms in integration. We will find the integration of each term individually using some integration formulas and substituting necessary values where they are required. After doing integration for all the individual terms we will add them to get the final integral value of given expression 3z38z+5z24z7dz\int{\dfrac{3{{z}^{3}}-8z+5}{\sqrt{{{z}^{2}}-4z-7}}dz} and then we will compare our result of integration with the R.H.S, then we will get the values of a,ba,b.

**
**

Complete step by step answer:

Given that,

3z38z+5z24z7dz=(z2+az+36)z24z7+blogz2+z24z7+C\int{\dfrac{3{{z}^{3}}-8z+5}{\sqrt{{{z}^{2}}-4z-7}}}dz=\left( {{z}^{2}}+az+36 \right)\sqrt{{{z}^{2}}-4z-7}+b\log \left| z-2+\sqrt{{{z}^{2}}-4z-7} \right|+C

Take L.H.S from the above given equation, then

L.H.S=3z38z+5z24z7dz.....(i)L.H.S=\int{\dfrac{3{{z}^{3}}-8z+5}{\sqrt{{{z}^{2}}-4z-7}}dz}.....\left( \text{i} \right)

Simplify the expression z24z7{{z}^{2}}-4z-7 which is in denominator, then

z24z7=z22.2z+22227{{z}^{2}}-4z-7={{z}^{2}}-2.2z+{{2}^{2}}-{{2}^{2}}-7

=z22(2)(z)+2247={{z}^{2}}-2\left( 2 \right)\left( z \right)+{{2}^{2}}-4-7

=(z2)211 ={{\left( z-2 \right)}^{2}}-11

Let us take the substitution of z24z7=(z2)211{{z}^{2}}-4z-7={{\left( z-2 \right)}^{2}}-11 and z2=uz-2=u then dz=dudz=du in equation (i)\left( \text{i} \right)

3z38z+5z24z7dz=3(u+2)38(u+2)+5u211du\therefore \int{\dfrac{3{{z}^{3}}-8z+5}{\sqrt{{{z}^{2}}-4z-7}}dz}=\int{\dfrac{3{{\left( u+2 \right)}^{3}}-8\left( u+2 \right)+5}{\sqrt{{{u}^{2}}-11}}}du

=3(u+2)38u16+5u211du=\int{\dfrac{3{{\left( u+2 \right)}^{3}}-8u-16+5}{\sqrt{{{u}^{2}}-11}}du}

=3(u+2)38u11u211du =\int{\dfrac{3{{\left( u+2 \right)}^{3}}-8u-11}{\sqrt{{{u}^{2}}-11}}du}

Now take the substitution u=11secvu=\sqrt{11}\sec v then v=sec1(u11)v={{\sec }^{-1}}\left( \dfrac{u}{\sqrt{11}} \right) and du=11secvtanv.dvdu=\sqrt{11}\sec v\tan v.dvin the above equation, then we have

3(u+2)38u11u211du=3(11secv+2)38(11secv)11(11sec)211.(11secvtanv.dv)\int{\dfrac{3{{\left( u+2 \right)}^{3}}-8u-11}{\sqrt{{{u}^{2}}-11}}}du=\int{\dfrac{3{{\left( \sqrt{11}\sec v+2 \right)}^{3}}-8\left( \sqrt{11}\sec v \right)-11}{\sqrt{{{\left( \sqrt{11}\sec \right)}^{2}}-11}}}.\left( \sqrt{11}\sec v\tan v.dv \right)

=3(11secv+2)3811secv1111(sec21).(11secvtanv.dv)=\int{\dfrac{3{{\left( \sqrt{11}\sec v+2 \right)}^{3}}-8\sqrt{11}\sec v-11}{\sqrt{11\left( {{\sec }^{2}}-1 \right)}}}.\left( \sqrt{11}\sec v\tan v.dv \right)

=3(11secv+2)3811secv1111tanv.(11secvtanv.dv) [sec2xtan2x=1]=\int{\dfrac{3{{\left( \sqrt{11}\sec v+2 \right)}^{3}}-8\sqrt{11}\sec v-11}{\sqrt{11}\tan v}.}\left( \sqrt{11}\sec v\tan v.dv \right)\text{ }\left[ \because {{\sec }^{2}}x-{{\tan }^{2}}x=1 \right]

=(3secv(11secv+2)3811sec2v11secv)dv=\int{\left( 3\sec v{{\left( \sqrt{11}\sec v+2 \right)}^{3}}-8\sqrt{11}{{\sec }^{2}}v-11\sec v \right)dv}

=3secv(11secv+2)3.dv811sec2v.dv11secv.dv....(ii)=3\int{\sec v}{{\left( \sqrt{11}\sec v+2 \right)}^{3}}.dv-8\sqrt{11}\int{{{\sec }^{2}}v}.dv-11\int{\sec v.dv}....\left( \text{ii} \right)

Finding the integrals of secv(11sec+2)3\sec v{{\left( \sqrt{11}\sec +2 \right)}^{3}} , sec2v{{\sec }^{2}}v individually, then

secv(11secv+2)3dv=secv[(11secv)3+23+3(11secv)(2)(11secv+2)]dv{{\int{\sec v\left( \sqrt{11}\sec v+2 \right)}}^{3}}dv=\int{\sec v\left[ {{\left( \sqrt{11}\sec v \right)}^{3}}+{{2}^{3}}+3\left( \sqrt{11}\sec v \right)\left( 2 \right)\left( \sqrt{11}\sec v+2 \right) \right]}dv

=secv[1132sec3v+8+611secv(11secv+2)]=\int{\sec v\left[ {{11}^{\dfrac{3}{2}}}{{\sec }^{3}}v+8+6\sqrt{11}\sec v\left( \sqrt{11}\sec v+2 \right) \right]}

=secv[1132sec3v+8+6.11sec2v+1211secv]dv=\int{\sec v\left[ {{11}^{\dfrac{3}{2}}}{{\sec }^{3}}v+8+6.11{{\sec }^{2}}v+12\sqrt{11}\sec v \right]dv}

=secv[1132sec3v+66sec2v+1211secv+8]dv=\int{\sec v\left[ {{11}^{\dfrac{3}{2}}}{{\sec }^{3}}v+66{{\sec }^{2}}v+12\sqrt{11}\sec v+8 \right]}dv

=(1132sec4v+66sec3v+1211sec2v+8secv)dv....(iii)=\int{\left( {{11}^{\dfrac{3}{2}}}{{\sec }^{4}}v+66{{\sec }^{3}}v+12\sqrt{11}{{\sec }^{2}}v+8\sec v \right)dv}....\left( \text{iii} \right)

Now the values of sec4vdv,sec3vdv,sec2dv\int{{{\sec }^{4}}v}dv,\int{{{\sec }^{3}}v}dv,\int{{{\sec }^{2}}}dv are

For finding the value of sec2vdv\int{{{\sec }^{2}}v}dv consider the equation ddx(tanx+C)\dfrac{d}{dx}\left( \tan x+C \right), we have

ddx(tanx+C)=ddx(tanx)+ddx(C)\dfrac{d}{dx}\left( \tan x+C \right)=\dfrac{d}{dx}\left( \tan x \right)+\dfrac{d}{dx}\left( C \right)

ddx(tanx+C)=sec2x+0\dfrac{d}{dx}\left( \tan x+C \right)={{\sec }^{2}}x+0

d(tanx+C)=sec2xdxd\left( \tan x+C \right)={{\sec }^{2}}xdx

sec2xdx=tanx+C.....(a)\int{{{\sec }^{2}}x}dx=\tan x+C.....\left( \text{a} \right)

For finding the value of sec3xdx\int{{{\sec }^{3}}x}dx use the integral by part then p=secx,dq=sec2x,dp=secxtanxdx,q=tanxp=\sec x,dq={{\sec }^{2}}x,dp=\sec x\tan xdx,q=\tan x

Substitute the above values in pqqdppq-\int{qdp}, then

sec3xdx=secxtanxtan2xsecxdx\int{{{\sec }^{3}}x}dx=\sec x\tan x-\int{{{\tan }^{2}}x\sec x}dx

=secxtanx(sec2x1)secxdx=\sec x\tan x-\int{\left( {{\sec }^{2}}x-1 \right)\sec xdx}

=secxtanxsec3xdx+secxdx=\sec x\tan x-\int{{{\sec }^{3}}x}dx+\int{\sec xdx}

sec3xdx+sec3xdx=secxtanx+secxdx\int{{{\sec }^{3}}x}dx+\int{{{\sec }^{3}}x}dx=\sec x\tan x+\int{\sec xdx}

2sec3xdx=secxtanx+logsecx+tanx2\int{{{\sec }^{3}}x}dx=\sec x\tan x+\log \left| \sec x+\tan x \right|

sec3xdx=12secxtanx+12logsecx+tanx+C....(b) \int{{{\sec }^{3}}x}dx=\dfrac{1}{2}\sec x\tan x+\dfrac{1}{2}\log \left| \sec x+\tan x \right|+C....\left( \text{b} \right)

Finding the value of sec4xdx\int{{{\sec }^{4}}x}dx.

sec4xdx=sec2x(sec2x)dx\int{{{\sec }^{4}}x}dx=\int{{{\sec }^{2}}x}\left( {{\sec }^{2}}x \right)dx

=sec2x(1+tan2x)dx=\int{{{\sec }^{2}}x}\left( 1+{{\tan }^{2}}x \right)dx

Let us substitute t=tanxt=\tan x and dt=sec2xdxdt={{\sec }^{2}}xdx in above equation, then

sec4xdx=(1+t2)dt\int{{{\sec }^{4}}x}dx=\int{\left( 1+{{t}^{2}} \right)dt}

=t+t33+C=t+\dfrac{{{t}^{3}}}{3}+C

=tanx+tan3x3+C....(c)=\tan x+\dfrac{{{\tan }^{3}}x}{3}+C....\left( \text{c} \right)

From equations a,b,ca,b,c we have values of sec4vdv,sec3vdv,sec2dv\int{{{\sec }^{4}}v}dv,\int{{{\sec }^{3}}v}dv,\int{{{\sec }^{2}}}dv, so substituting those values in equation (iii)\left( \text{iii} \right) then we have

secv(11secv+2)3dv=1132sec4vdv+66sec3vdv+1211sec2vdv+8secvdv\int{\sec v{{\left( \sqrt{11}\sec v+2 \right)}^{3}}dv}={{11}^{\dfrac{3}{2}}}\int{{{\sec }^{4}}vdv}+66\int{{{\sec }^{3}}v}dv+12\sqrt{11}\int{{{\sec }^{2}}vdv}+8\int{\sec vdv}

=1132[tanv+tan3v3]+66[12(secvtanv+logsecv+tanv)]+1211(tanv)+8logsecv+tanv+C={{11}^{\dfrac{3}{2}}}\left[ \tan v+\dfrac{{{\tan }^{3}}v}{3} \right]+66\left[ \dfrac{1}{2}\left( \sec v\tan v+\log \left| \sec v+\tan v \right| \right) \right]+12\sqrt{11}\left( \tan v \right)+8\log \left| \sec v+\tan v \right|+C

=1132tanv+11323tan3v+33secvtanv+33logsecv+tanv+1211tanv+8logsecv+tanv+C={{11}^{\dfrac{3}{2}}}\tan v+\dfrac{{{11}^{\dfrac{3}{2}}}}{3}{{\tan }^{3}}v+33\sec v\tan v+33\log \left| \sec v+\tan v \right|+12\sqrt{11}\tan v+8\log \left| \sec v+\tan v \right|+C

=11323tan3v+1211tanv+(11)3tanv+33secv.tanv+41logsecv+tanv+C=\dfrac{{{11}^{\dfrac{3}{2}}}}{3}{{\tan }^{3}}v+12\sqrt{11}\tan v+{{\left( \sqrt{11} \right)}^{3}}\tan v+33\sec v.\tan v+41\log \left| \sec v+\tan v \right|+C

=11323tan3v+11[12+(11)2]tanv+33secv.tanv+41logsecv+tanv+C=\dfrac{{{11}^{\dfrac{3}{2}}}}{3}{{\tan }^{3}}v+\sqrt{11}\left[ 12+{{\left( \sqrt{11} \right)}^{2}} \right]\tan v+33\sec v.\tan v+41\log \left| \sec v+\tan v \right|+C

=11323tan3v+2311tanv+33secv.tanv+41logsecv+tanv+C =\dfrac{{{11}^{\dfrac{3}{2}}}}{3}{{\tan }^{3}}v+23\sqrt{11}\tan v+33\sec v.\tan v+41\log \left| \sec v+\tan v \right|+C

Substituting the above value in equation (ii)\left( \text{ii} \right), then we have

3(u+2)38u11u211=3secv(11secv+2)3dv811sec2vdv11secvdv\int{\dfrac{3{{\left( u+2 \right)}^{3}}-8u-11}{\sqrt{{{u}^{2}}-11}}}=3\int{\sec v{{\left( \sqrt{11}\sec v+2 \right)}^{3}}dv}-8\sqrt{11}\int{{{\sec }^{2}}vdv}-11\int{\sec vdv}

=3[11323tan3v+2311tanv+33secv.tanv+41logsecv+tanv]811tanv11logsecv+tanv+C=3\left[ \dfrac{{{11}^{\dfrac{3}{2}}}}{3}{{\tan }^{3}}v+23\sqrt{11}\tan v+33\sec v.\tan v+41\log \left| \sec v+\tan v \right| \right]-8\sqrt{11}\tan v-11\log \left| \sec v+\tan v \right|+C

=1132tan3v+6911tanv+99secv.tanv+123logsecv+tanv811tanv11logsecv+tanv+C={{11}^{\dfrac{3}{2}}}{{\tan }^{3}}v+69\sqrt{11}\tan v+99\sec v.\tan v+123\log \left| \sec v+\tan v \right|-8\sqrt{11}\tan v-11\log \left| \sec v+\tan v \right|+C

=1132tan3v+6111tanv+99secv.tanv+112logsecv+tanv+C={{11}^{\dfrac{3}{2}}}{{\tan }^{3}}v+61\sqrt{11}\tan v+99\sec v.\tan v+112\log \left| \sec v+\tan v \right|+C

But we have the value of vv as sec1(u11){{\sec }^{-1}}\left( \dfrac{u}{\sqrt{11}} \right) i.e. secv=u11\sec v=\dfrac{u}{\sqrt{11}} hence tanv=sec2v1=u2111\tan v=\sqrt{{{\sec }^{2}}v-1}=\sqrt{\dfrac{{{u}^{2}}}{11}-1}, no the above equation is modified as

3(u+2)38u11u211=1132(u2111)+6111(u2111)+99(u11)(u2111)+112log(u11)+(u2111)+C\int{\dfrac{3{{\left( u+2 \right)}^{3}}-8u-11}{\sqrt{{{u}^{2}}-11}}}={{11}^{\dfrac{3}{2}}}\left( \sqrt{\dfrac{{{u}^{2}}}{11}-1} \right)+61\sqrt{11}\left( \sqrt{\dfrac{{{u}^{2}}}{11}-1} \right)+99\left( \dfrac{u}{\sqrt{11}} \right)\left( \sqrt{\dfrac{{{u}^{2}}}{11}-1} \right)+112\log \left| \left( \dfrac{u}{\sqrt{11}} \right)+\left( \sqrt{\dfrac{{{u}^{2}}}{11}-1} \right) \right|+C

Again, we have u=z2u=z-2 hence the above equation is converted as

3(u+2)38u11u211=1132((z2)2111)3+6111((z2)2111)+99(z211)((z2)2111)+112log(z211)+((z2)2111)+C\int{\dfrac{3{{\left( u+2 \right)}^{3}}-8u-11}{\sqrt{{{u}^{2}}-11}}}={{11}^{\dfrac{3}{2}}}{{\left( \sqrt{\dfrac{{{\left( z-2 \right)}^{2}}}{11}-1} \right)}^{3}}+61\sqrt{11}\left( \sqrt{\dfrac{{{\left( z-2 \right)}^{2}}}{11}-1} \right)+99\left( \dfrac{z-2}{\sqrt{11}} \right)\left( \sqrt{\dfrac{{{\left( z-2 \right)}^{2}}}{11}-1} \right)+112\log \left| \left( \dfrac{z-2}{\sqrt{11}} \right)+\left( \sqrt{\dfrac{{{\left( z-2 \right)}^{2}}}{11}-1} \right) \right|+C

=1132((z2)21111)32+6111((z2)21111)+99(z211)((z2)21111)+112log(z211)+((z2)21111)+C={{11}^{\dfrac{3}{2}}}{{\left( \dfrac{{{\left( z-2 \right)}^{2}}-11}{11} \right)}^{\dfrac{3}{2}}}+61\sqrt{11}\sqrt{\left( \dfrac{{{\left( z-2 \right)}^{2}}-11}{11} \right)}+99\left( \dfrac{z-2}{\sqrt{11}} \right)\sqrt{\left( \dfrac{{{\left( z-2 \right)}^{2}}-11}{11} \right)}+112\log \left| \left( \dfrac{z-2}{\sqrt{11}} \right)+\sqrt{\left( \dfrac{{{\left( z-2 \right)}^{2}}-11}{11} \right)} \right|+C

=(z24z7)32+61(z24z7)+9(z2)(z24z7)+112log(z211)+z24z711+C={{\left( {{z}^{2}}-4z-7 \right)}^{\dfrac{3}{2}}}+61\left( {{z}^{2}}-4z-7 \right)+9\left( z-2 \right)\left( {{z}^{2}}-4z-7 \right)+112\log \left| \left( \dfrac{z-2}{\sqrt{11}} \right)+\dfrac{\sqrt{{{z}^{2}}-4z-7}}{\sqrt{11}} \right|+C

=(z24z7)3+61(z24z7)+9(z2)(z24z7)+112logz2+z24z7+C={{\left( \sqrt{{{z}^{2}}-4z-7} \right)}^{3}}+61\left( {{z}^{2}}-4z-7 \right)+9\left( z-2 \right)\left( {{z}^{2}}-4z-7 \right)+112\log \left| z-2+\sqrt{{{z}^{2}}-4z-7} \right|+C

=(z24z7)[(z24z7)2+61+9z18]+112logz2+z24z7+C=\left( {{z}^{2}}-4z-7 \right)\left[ {{\left( \sqrt{{{z}^{2}}-4z-7} \right)}^{2}}+61+9z-18 \right]+112\log \left| z-2+\sqrt{{{z}^{2}}-4z-7} \right|+C

=(z24z7)[z24z7+9z+43]+112logz2+z24z7+C=\left( {{z}^{2}}-4z-7 \right)\left[ {{z}^{2}}-4z-7+9z+43 \right]+112\log \left| z-2+\sqrt{{{z}^{2}}-4z-7} \right|+C

=(z24z7)(z2+5z+36)+112logz2+z24z7+C=\left( {{z}^{2}}-4z-7 \right)\left( {{z}^{2}}+5z+36 \right)+112\log \left| z-2+\sqrt{{{z}^{2}}-4z-7} \right|+C

Now equating the L.H.S=R.H.SL.H.S=R.H.S we have

(z2+5z+36)(z24z7)+112logz2+z24z7+C=(z2+az+36)z24z7+blogz2+z24z7+C\left( {{z}^{2}}+5z+36 \right)\left( {{z}^{2}}-4z-7 \right)+112\log \left| z-2+\sqrt{{{z}^{2}}-4z-7} \right|+C=\left( {{z}^{2}}+az+36 \right)\sqrt{{{z}^{2}}-4z-7}+b\log \left| z-2+\sqrt{{{z}^{2}}-4z-7} \right|+C

From above equation we have

a=5a=5 , b=112b=112 hence a+b=117a+b=117 and a<ba < b and Exactly one out of aa or bb is a prime number. Here a is prime number

So, the correct answer is “Option B,C and D”.

Note: In this problem we all need to expand the expressions using algebraic formulas carefully and while finding the integration of the equations having multiple terms it is advisable to split the terms and integrate them individually and then substitute them in the integration equation.