Solveeit Logo

Question

Mathematics Question on Integration

If cosec5xdx=αcotxcosecx(cosec2x+32)+βlogetanx2+C,\int \cosec^5 x \, dx = \alpha \cot x \cosec x \left( \cosec^2 x + \frac{3}{2} \right) + \beta \log_e \left| \tan \frac{x}{2} \right| + C, where α,βR\alpha, \beta \in \mathbb{R} and CC is the constant of integration, then the value of 8(α+β)8(\alpha + \beta) equals:

Answer

To evaluate the integral csc5xdx\int \csc^5 x \, dx, we use integration by parts. Let

I=csc3xcsc2xdx.I = \int \csc^3 x \cdot \csc^2 x \, dx.

Applying integration by parts, we let:

I=cotxcsc3x+cotx(3csc2xcotxcscx)dx.I = -\cot x \csc^3 x + \int \cot x \cdot (-3 \csc^2 x \cot x \csc x) \, dx.

Simplifying, we get:

I=cotxcsc3x3csc3x(csc2x1)dx,I = -\cot x \csc^3 x - 3 \int \csc^3 x (\csc^2 x - 1) \, dx, I=cotxcsc3x3I+3csc3xdx.I = -\cot x \csc^3 x - 3I + 3 \int \csc^3 x \, dx.

Let

I1=csc3xdx=cscxcotxcot2xcscxdx.I_1 = \int \csc^3 x \, dx = -\csc x \cot x - \int \cot^2 x \csc x \, dx.

Using this and simplifying further, we identify values for α\alpha and β\beta. After solving, we find:

8(α+β)=3.8(\alpha + \beta) = 3.