Question
Mathematics Question on Integration
If ∫cosec5xdx=αcotxcosecx(cosec2x+23)+βlogetan2x+C, where α,β∈R and C is the constant of integration, then the value of 8(α+β) equals:
Answer
To evaluate the integral ∫csc5xdx, we use integration by parts. Let
I=∫csc3x⋅csc2xdx.
Applying integration by parts, we let:
I=−cotxcsc3x+∫cotx⋅(−3csc2xcotxcscx)dx.
Simplifying, we get:
I=−cotxcsc3x−3∫csc3x(csc2x−1)dx, I=−cotxcsc3x−3I+3∫csc3xdx.
Let
I1=∫csc3xdx=−cscxcotx−∫cot2xcscxdx.
Using this and simplifying further, we identify values for α and β. After solving, we find:
8(α+β)=3.