Question
Mathematics Question on Definite Integral
If ∫cosx.cos2x.cos5xdx=Asin2x+Bsin4x+Csin6x+Dsin8x+k (where k is the arbitrary constant of integration), then B1+C1=
A
A1−D1
B
A1+D1
C
1
D
0
Answer
A1+D1
Explanation
Solution
Given, ∫cosx⋅cos2x⋅cos5xdx
=21∫2cosxcos5xcos2xdx
=21∫cos(5x+x)+cos(5x−x)cos2xdx
=21∫(cos6x+cos4x)cos2xdx
=41∫(2cos6xcos2x+2cos2xcos4x)dx
=41∫(cos8x+cos4x+cos6x+cos2x)dx
=41[8sin8x+4sin4x+6sin6x+2sin2x]+k
=8sin2x+16sin4x+24sin6x+32sin8x+k
On comparing,
A=81,B=161,C=241 and D=321
∴B1+C1=16+24=40
Now, A1+D1=8+32=40
∴B1+C1=A1+D1