Solveeit Logo

Question

Mathematics Question on Definite Integral

If cosx.cos2x.cos5xdx=A  sin2x+Bsin4x+Csin6x+Dsin8x+k\int \cos x . \cos 2x . \cos 5x dx = A \; \sin 2x + B \sin 4x + C \sin 6x + D \sin 8x + k (where kk is the arbitrary constant of integration), then 1B+1C=\frac{1}{B} + \frac{1}{C} =

A

1A1D\frac{1}{A} - \frac{1}{D }

B

1A+1D\frac{1}{A} + \frac{1}{D }

C

11

D

00

Answer

1A+1D\frac{1}{A} + \frac{1}{D }

Explanation

Solution

Given, cosxcos2xcos5xdx\int \cos x \cdot \cos 2 x \cdot \cos 5 x d x
=122cosxcos5xcos2xdx=\frac{1}{2} \int 2 \cos x \cos 5 x \cos 2 x d x
=12cos(5x+x)+cos(5xx)cos2xdx=\frac{1}{2} \int\\{\cos (5 x+x)+\cos (5 x-x)\\} \cos 2 x d x
=12(cos6x+cos4x)cos2xdx=\frac{1}{2} \int(\cos 6 x+\cos 4 x) \cos 2 x d x
=14(2cos6xcos2x+2cos2xcos4x)dx=\frac{1}{4} \int(2 \cos 6 x \cos 2 x+2 \cos 2 x \cos 4 x) d x
=14(cos8x+cos4x+cos6x+cos2x)dx=\frac{1}{4} \int(\cos 8 x+\cos 4 x+\cos 6 x+\cos 2 x) d x
=14[sin8x8+sin4x4+sin6x6+sin2x2]+k=\frac{1}{4}\left[\frac{\sin 8 x}{8}+\frac{\sin 4 x}{4}+\frac{\sin 6 x}{6}+\frac{\sin 2 x}{2}\right]+k
=sin2x8+sin4x16+sin6x24+sin8x32+k=\frac{\sin 2 x}{8}+\frac{\sin 4 x}{16}+\frac{\sin 6 x}{24}+\frac{\sin 8 x}{32}+k
On comparing,
A=18,B=116,C=124A=\frac{1}{8}, B=\frac{1}{16}, C=\frac{1}{24} and D=132D=\frac{1}{32}
1B+1C=16+24=40\therefore \frac{1}{B}+\frac{1}{C}=16+24=40
Now, 1A+1D=8+32=40\frac{1}{A}+\frac{1}{D}=8+32=40
1B+1C=1A+1D\therefore \frac{1}{B}+\frac{1}{C}=\frac{1}{A}+\frac{1}{D}