Solveeit Logo

Question

Question: If \(\int {\cos ec2xdx = f\left( {g\left( x \right)} \right) + C} \), then A) range \(g\left( x \r...

If cosec2xdx=f(g(x))+C\int {\cos ec2xdx = f\left( {g\left( x \right)} \right) + C} , then
A) range g(x)=(,)g\left( x \right) = \left( { - \infty ,\infty } \right)
B) dom g\left( x \right) = \left( { - \infty ,\infty } \right) - \left\\{ 0 \right\\}
C) g(x)=sec2xg'\left( x \right) = {\sec ^2}x
D) f(x)=1xf'\left( x \right) = \dfrac{1}{x} for all x(0,)x \in \left( {0,\infty } \right)

Explanation

Solution

Our given function can be written as dxsin2x\int {\dfrac{{dx}}{{\sin 2x}}} and by using the identity sin2x=2sinxcosx\sin 2x = 2\sin x\cos x we get an integral and we can use our substitution method by taking t=sinxt = \sin x and simplifying further once again we use substitution method by taking y=(1t2)y = \left( {1 - {t^2}} \right) and further simplifying we get f(x)=lnxf(x) = \ln x and g(x)=tanxg(x) = \tan x using this we get our required conditions.

Complete step by step solution:
We are given a function cosec2xdx\int {\cos ec2xdx}
We know that cosecx\cos ec x can be written as 1sinx\dfrac{1}{{\sin x}}
Using this we get
dxsin2x\Rightarrow \int {\dfrac{{dx}}{{\sin 2x}}}
Then let's use the identity sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
dx2sinxcosx\Rightarrow \int {\dfrac{{dx}}{{2\sin x\cos x}}}
Now lets use substitution method to solve the following integral
Let t=sinxt = \sin x
Differentiating we get dt=cosxdxdt = \cos xdx

dt2tcosxcosx dt2tcos2x  \Rightarrow \int {\dfrac{{dt}}{{2t\cos x\cos x}}} \\\ \Rightarrow \int {\dfrac{{dt}}{{2t{{\cos }^2}x}}} \\\

Now since t=sinxt = \sin x
t2=sin2x t2=1cos2x cos2x=1t2  \Rightarrow {t^2} = {\sin ^2}x \\\ \Rightarrow {t^2} = 1 - {\cos ^2}x \\\ \Rightarrow {\cos ^2}x = 1 - {t^2} \\\
Using this we get
dt2t(1t2)\Rightarrow \int {\dfrac{{dt}}{{2t\left( {1 - {t^2}} \right)}}}
Now let's add and subtract in the numerator

1+t2t22t(1t2)dt 1t22t(1t2)+t22t(1t2)dt 12t+t2(1t2)dt  \Rightarrow \int {\dfrac{{1 + {t^2} - {t^2}}}{{2t\left( {1 - {t^2}} \right)}}dt} \\\ \Rightarrow \int {\dfrac{{1 - {t^2}}}{{2t\left( {1 - {t^2}} \right)}} + } \dfrac{{{t^2}}}{{2t\left( {1 - {t^2}} \right)}}dt \\\ \Rightarrow \int {\dfrac{1}{{2t}} + } \dfrac{t}{{2\left( {1 - {t^2}} \right)}}dt \\\

Now let's multiply and divide 2 in the second part
12tdt+142t(1t2)dt\Rightarrow \int {\dfrac{1}{{2t}}dt} + \dfrac{1}{4}\int {\dfrac{{2t}}{{\left( {1 - {t^2}} \right)}}dt}
Integrating the first part we get
12lnt+142t(1t2)dt\Rightarrow \dfrac{1}{2}\ln t + \dfrac{1}{4}\int {\dfrac{{2t}}{{\left( {1 - {t^2}} \right)}}dt}
Now once again let's use substitution method
Let y=(1t2)y = \left( {1 - {t^2}} \right)
Differentiating we get dy=2tdtdy = - 2tdt
Now we get
12lnt+14dyy\Rightarrow \dfrac{1}{2}\ln t + \dfrac{1}{4}\int {\dfrac{{ - dy}}{y}}
Integrating this we get
12lnt+14lny+C\Rightarrow \dfrac{1}{2}\ln t + \dfrac{{ - 1}}{4}\ln y + C
Replacing y by (1t2)\left( {1 - {t^2}} \right)

12lnt14ln(1t2)+C 2lntln(1t2)4+C lnt2ln(1t2)4+C ln(t2(1t2))4+C  \Rightarrow \dfrac{1}{2}\ln t - \dfrac{1}{4}\ln \left( {1 - {t^2}} \right) + C \\\ \Rightarrow \dfrac{{2\ln t - \ln \left( {1 - {t^2}} \right)}}{4} + C \\\ \Rightarrow \dfrac{{\ln {t^2} - \ln \left( {1 - {t^2}} \right)}}{4} + C \\\ \Rightarrow \dfrac{{\ln \left( {\dfrac{{{t^2}}}{{\left( {1 - {t^2}} \right)}}} \right)}}{4} + C \\\

Now using t=sinxt = \sin x

ln(sin2x(1sin2x))4+C ln(sin2xcos2x)4+C ln(tan2x)4+C 2ln(tanx)4+C ln(tanx)2+C  \Rightarrow \dfrac{{\ln \left( {\dfrac{{{{\sin }^2}x}}{{\left( {1 - {{\sin }^2}x} \right)}}} \right)}}{4} + C \\\ \Rightarrow \dfrac{{\ln \left( {\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}} \right)}}{4} + C \\\ \Rightarrow \dfrac{{\ln \left( {{{\tan }^2}x} \right)}}{4} + C \\\ \Rightarrow \dfrac{{2\ln \left( {\tan x} \right)}}{4} + C \\\ \Rightarrow \dfrac{{\ln \left( {\tan x} \right)}}{2} + C \\\

From this obtain that f(x)=lnxf(x) = \ln x and g(x)=tanxg(x) = \tan x
Differentiating them we get f(x)=1xf'(x) = \dfrac{1}{x} and g(x)=sec2xg'(x) = {\sec ^2}x
Now with our g(x) we can see the range and domain of tanx is (,)\left( { - \infty ,\infty } \right)
From this we get that the options a , c and d are correct.

Note:
The domain of a function f(x) is the set of all values for which the function is defined, and the range of the function is the set of all values that f takes. (In grammar school, you probably called the domain the replacement set and the range the solution set.