Solveeit Logo

Question

Question: If \(\int _ { \sin \mathrm { x } } ^ { 1 } \mathrm { t } ^ { 2 } \mathrm { f } ( \mathrm { t } ) \m...

If sinx1t2f(t)dt\int _ { \sin \mathrm { x } } ^ { 1 } \mathrm { t } ^ { 2 } \mathrm { f } ( \mathrm { t } ) \mathrm { dt } = (1 – sin x), then f (13)\left( \frac { 1 } { \sqrt { 3 } } \right) is equal to

A

1/3

B

1/ 3\sqrt { 3 }

C

3

D

3\sqrt { 3 }

Answer

3

Explanation

Solution

Differentiating both sides with respect to x, we have

0 – sin2x f(sin x). cos x = – cos x

̃ f(sin x) =

[Q cos x ¹ 0 as t Î (sin x, sin p/2) so x¹ p/2]

̃ f(x) = 1/x2

\ f (13)\left( \frac { 1 } { \sqrt { 3 } } \right) = 3