Solveeit Logo

Question

Mathematics Question on integral

If 32f(x)dx=73\int^{2}_{-3} f\left(x\right)dx = \frac{7}{3} and 39f(x)dx=56,\int^{9}_{-3} f\left(x\right)dx = - \frac{5}{6} , then what is the value of 29f(x)dx\int^{9}_{2} f\left(x\right)dx ?

A

196 - \frac{19}{6}

B

196 \frac{19}{6}

C

32\frac{3}{2}

D

32 - \frac{3}{2}

Answer

196 - \frac{19}{6}

Explanation

Solution

Value of the integral 29f(x)dx\int^{9}_2 f(x) dx =39f(x)dx32f(x)dx= \int^{9}_{-3} f\left(x\right)dx - \int^{2}_{-3} f\left(x\right)dx Given, 39f(x)dx=56\int^{9}_{-3} f\left(x\right)dx = \frac{-5}{6} and 32f(x)dx=73\int^{2}_{- 3}f\left(x\right)dx = \frac{7}{3} Putting these values in equation (i) 29f(x)dx=5673=196\int^{9}_{2} f\left(x\right)dx = \frac{-5}{6} - \frac{7}{3} = - \frac{19}{6}