Solveeit Logo

Question

Mathematics Question on Integration

If 0π/4sin2x1+sinxcosxdx=1aloge(a3)+πb3,\int_{0}^{\pi/4} \frac{\sin^2 x}{1 + \sin x \cos x} \, dx = \frac{1}{a} \log_e \left( \frac{a}{3} \right) + \frac{\pi}{b\sqrt{3}},where a,bNa, b \in \mathbb{N}, then a+ba + b is equal to _____

Answer

Given integral:
0π4sin2x1+sinxcosxdx=0π4sin2x1+12sin2xdx=0π41cos2x2+sin2xdx\int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{1 + \sin x \cos x} dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{1 + \frac{1}{2} \sin 2x} dx = \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos 2x}{2 + \sin 2x} dx

We separate this into two integrals:
0π412+sin2xdx0π4cos2x2+sin2xdx\int_{0}^{\frac{\pi}{4}} \frac{1}{2 + \sin 2x} dx - \int_{0}^{\frac{\pi}{4}} \frac{\cos 2x}{2 + \sin 2x} dx

Denote these integrals as I1I_1 and I2I_2 respectively:
I1=0π4dx2+sin2x,I2=0π4cos2x2+sin2xdxI_1 = \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 + \sin 2x}, \quad I_2 = \int_{0}^{\frac{\pi}{4}} \frac{\cos 2x}{2 + \sin 2x} dx

For I1I_1, let tanx=t\tan x = t, hence:
dx=dt1+t2,sin2x=2t1+t2dx = \frac{dt}{1 + t^2}, \quad \sin 2x = \frac{2t}{1 + t^2}

Substituting these into the integral:
I1=1201dt(t+12)2+(32)2=π63I_1 = \frac{1}{2} \int_{0}^{1} \frac{dt}{\left(t + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \frac{\pi}{6\sqrt{3}}
For I2I_2, we use:
I2=0π4cos2x2+sin2xdxI_2 = \int_{0}^{\frac{\pi}{4}} \frac{\cos 2x}{2 + \sin 2x} dx
Applying another substitution and evaluating, we find:
I2=12ln(32)I_2 = \frac{1}{2} \ln \left(\frac{3}{2}\right)

Thus, the original integral becomes:
I=I1I2=π6312ln(32)I = I_1 - I_2 = \frac{\pi}{6\sqrt{3}} - \frac{1}{2} \ln \left(\frac{3}{2}\right)

Given that:
0π4sin2x1+sinxcosxdx=1alne(a3)+πb3\int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{1 + \sin x \cos x} dx = \frac{1}{a} \ln_e \left(\frac{a}{3}\right) + \frac{\pi}{b\sqrt{3}}
Comparing terms, we find: a=2,b=6a = 2, \quad b = 6
Therefore:
a+b=2+6=8a + b = 2 + 6 = 8