Question
Mathematics Question on Integration
If ∫0π/41+sinxcosxsin2xdx=a1loge(3a)+b3π,where a,b∈N, then a+b is equal to _____
Given integral:
∫04π1+sinxcosxsin2xdx=∫04π1+21sin2xsin2xdx=∫04π2+sin2x1−cos2xdx
We separate this into two integrals:
∫04π2+sin2x1dx−∫04π2+sin2xcos2xdx
Denote these integrals as I1 and I2 respectively:
I1=∫04π2+sin2xdx,I2=∫04π2+sin2xcos2xdx
For I1, let tanx=t, hence:
dx=1+t2dt,sin2x=1+t22t
Substituting these into the integral:
I1=21∫01(t+21)2+(23)2dt=63π
For I2, we use:
I2=∫04π2+sin2xcos2xdx
Applying another substitution and evaluating, we find:
I2=21ln(23)
Thus, the original integral becomes:
I=I1−I2=63π−21ln(23)
Given that:
∫04π1+sinxcosxsin2xdx=a1lne(3a)+b3π
Comparing terms, we find: a=2,b=6
Therefore:
a+b=2+6=8