Question
Mathematics Question on integral
If ∫03πcos4xdx=aπ+b3,where a and b are rational numbers, then 9a+8b is equal to:
2
1
3
23
2
Solution
To evaluate the integral:
I=∫03πcos4xdx
we use the power-reduction formula:
cos4x=(cos2x)2=(21+cos2x)2=41(1+2cos2x+cos22x)
Using the formula cos22x=21+cos4x:
cos4x=41(1+2cos2x+21+cos4x)=41(23+2cos2x+cos4x)=83+21cos2x+81cos4x
Now, integrating term by term:
I=∫03π(83+21cos2x+81cos4x)dx I=83∫03πdx+21∫03πcos2xdx+81∫03πcos4xdx
Evaluating each integral:
∫03πdx=3π ∫03πcos2xdx=2sin2x03π=21(sin32π−sin0)=21⋅23=43 ∫03πcos4xdx=4sin4x03π=41(sin34π−sin0)=41(−23)=−83
Substituting these values:
I=83⋅3π+21⋅43+81⋅(−83) I=8π+83−643
Combining terms:
I=8π+6473
Thus, comparing with I=aπ+b3:
a=81,b=647
Calculating 9a+8b:
9a+8b=9⋅81+8⋅647=89+6456=89+87=2
Conclusion: 9a+8b=2.