Solveeit Logo

Question

Mathematics Question on integral

If 0π3cos4xdx=aπ+b3,\int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = a\pi + b\sqrt{3},where aa and bb are rational numbers, then 9a+8b9a + 8b is equal to:

A

2

B

1

C

3

D

32\frac{3}{2}

Answer

2

Explanation

Solution

To evaluate the integral:

I=0π3cos4xdxI = \int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx

we use the power-reduction formula:

cos4x=(cos2x)2=(1+cos2x2)2=14(1+2cos2x+cos22x)\cos^4 x = (\cos^2 x)^2 = \left(\frac{1 + \cos 2x}{2}\right)^2 = \frac{1}{4}(1 + 2\cos 2x + \cos^2 2x)

Using the formula cos22x=1+cos4x2\cos^2 2x = \frac{1 + \cos 4x}{2}:

cos4x=14(1+2cos2x+1+cos4x2)=14(32+2cos2x+cos4x)=38+12cos2x+18cos4x\cos^4 x = \frac{1}{4}\left(1 + 2\cos 2x + \frac{1 + \cos 4x}{2}\right) = \frac{1}{4}\left(\frac{3}{2} + 2\cos 2x + \cos 4x\right) = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x

Now, integrating term by term:

I=0π3(38+12cos2x+18cos4x)dxI = \int_{0}^{\frac{\pi}{3}} \left(\frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x\right) dx I=380π3dx+120π3cos2xdx+180π3cos4xdxI = \frac{3}{8} \int_{0}^{\frac{\pi}{3}} dx + \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \cos 2x \, dx + \frac{1}{8} \int_{0}^{\frac{\pi}{3}} \cos 4x \, dx

Evaluating each integral:

0π3dx=π3\int_{0}^{\frac{\pi}{3}} dx = \frac{\pi}{3} 0π3cos2xdx=sin2x20π3=12(sin2π3sin0)=1232=34\int_{0}^{\frac{\pi}{3}} \cos 2x \, dx = \frac{\sin 2x}{2} \bigg|_{0}^{\frac{\pi}{3}} = \frac{1}{2} \left(\sin \frac{2\pi}{3} - \sin 0\right) = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} 0π3cos4xdx=sin4x40π3=14(sin4π3sin0)=14(32)=38\int_{0}^{\frac{\pi}{3}} \cos 4x \, dx = \frac{\sin 4x}{4} \bigg|_{0}^{\frac{\pi}{3}} = \frac{1}{4} \left(\sin \frac{4\pi}{3} - \sin 0\right) = \frac{1}{4} \left(-\frac{\sqrt{3}}{2}\right) = -\frac{\sqrt{3}}{8}

Substituting these values:

I=38π3+1234+18(38)I = \frac{3}{8} \cdot \frac{\pi}{3} + \frac{1}{2} \cdot \frac{\sqrt{3}}{4} + \frac{1}{8} \cdot \left(-\frac{\sqrt{3}}{8}\right) I=π8+38364I = \frac{\pi}{8} + \frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{64}

Combining terms:

I=π8+7364I = \frac{\pi}{8} + \frac{7\sqrt{3}}{64}

Thus, comparing with I=aπ+b3I = a\pi + b\sqrt{3}:

a=18,b=764a = \frac{1}{8}, \quad b = \frac{7}{64}

Calculating 9a+8b9a + 8b:

9a+8b=918+8764=98+5664=98+78=29a + 8b = 9 \cdot \frac{1}{8} + 8 \cdot \frac{7}{64} = \frac{9}{8} + \frac{56}{64} = \frac{9}{8} + \frac{7}{8} = 2

Conclusion: 9a+8b=29a + 8b = 2.