Question
Mathematics Question on Definite Integral
If
∫02(2x−2x−x2)dx=∫01(1−1−y2−2y2)dy+∫12(2−2y2)dy+I
then I equal is
A
∫01(1+1−y2)dy
B
∫01(2y2−1−y2+1)dy
C
∫01(1−1−y2)dy
D
∫01(2y2+1−y2+1)dy
Answer
∫01(1−1−y2)dy
Explanation
Solution
The correct answer is (C) : ∫01(1−1−y2)dy
∫022xdx−∫021−(x−1)2dx=∫02(1−2y2)dy−∫011−y2dy+1+l
⇒ 38−2∫011−y2dy=32+1−∫011−y2dy+l
⇒ I=1−∫011−y2dy
⇒ I=∫01(1−1−y2)dy