Solveeit Logo

Question

Mathematics Question on Definite Integral

If
02(2x2xx2)dx=01(11y2y22)dy+12(2y22)dy+I\int_{0}^{2} (\sqrt{2x} - \sqrt{2x - x^2}) \,dx = \int_{0}^{1} \left(1 - \sqrt{1 - y^2} - \frac{y^2}{2}\right) \,dy + \int_{1}^{2} (2 - \frac{y^2}{2}) \,dy + I
then I equal is

A

01(1+1y2)dy\int_{0}^{1} (1 + \sqrt{1 - y^2}) \,dy

B

01(y221y2+1)dy\int_{0}^{1} \left(\frac{y^2}{2} - \sqrt{1 - y^2} + 1\right) \,dy

C

01(11y2)dy\int_{0}^{1} (1 - \sqrt{1 - y^2}) \,dy

D

01(y22+1y2+1)dy\int_{0}^{1} \left(\frac{y^2}{2} + \sqrt{1 - y^2} + 1\right) \,dy

Answer

01(11y2)dy\int_{0}^{1} (1 - \sqrt{1 - y^2}) \,dy

Explanation

Solution

The correct answer is (C) : 01(11y2)dy\int_{0}^{1} (1 - \sqrt{1 - y^2}) \,dy
022xdx021(x1)2dx=02(1y22)dy011y2dy+1+l\int_{0}^{2} \sqrt{2x} \,dx - \int_{0}^{2} \sqrt{1 - (x - 1)^2} \,dx = \int_{0}^{2} \left(1 - \frac{y^2}{2}\right) \,dy - \int_{0}^{1} \sqrt{1 - y^2} \,dy + 1 + l
832011y2dy=23+1011y2dy+l\frac{8}{3} - 2\int_{0}^{1} \sqrt{1 - y^2} \,dy = \frac{2}{3} + 1 - \int_{0}^{1} \sqrt{1 - y^2} \,dy + l
I=1011y2dyI = 1 - \int_{0}^{1} \sqrt{1 - y^2} \,dy
I=01(11y2)dyI = \int_{0}^{1} (1 - \sqrt{1 - y^2}) \,dy