Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Answer

Let the radii of the two circles be r1 and r2 . Let an arc of length l subtend an angle of 60° at the centre of the circle of radiusr1, while let an arc of length l subtend an angle of 75° at the centre of the circle of radius r2

Now,60°=π3radian and75°=π12radianNow, \,60° = \frac{\pi}{3} \text{radian and\,75°} =\frac{\pi}{12}\,radian

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then

θ=lrorl=rθθ=\frac{l}{r}\,or\,l=rθ

l=r1π3andl=r25π12l=\frac{r_1{\pi}}{3}\,and\,l=\frac{r_25{\pi}}{12}

=r1π3andl=r25π12=\frac{r_1{\pi}}{3}\,and\,l=\frac{r_25{\pi}}{12}

r1=r254r_1=\frac{r_25}{4}

r1r2=54\frac{r_1}{r_2}=\frac{5}{4}

Thus, the ratio of the radii is 5:4.