Solveeit Logo

Question

Question: If in triangle ABC, r<sub>1</sub> = 2r<sub>2</sub> = 3r<sub>3</sub>, D is the middle point of BC. Th...

If in triangle ABC, r1 = 2r2 = 3r3, D is the middle point of BC. Then cos (ĐADC) is equal to –

A

725\frac { 7 } { 25 }

B

725\frac { 7 } { 25 }

C

2425\frac { 24 } { 25 }

D

2425\frac { 24 } { 25 }

Answer

725\frac { 7 } { 25 }

Explanation

Solution

r1 = 2r1 = 3r3 ̃ = 2Δsb\frac { 2 \Delta } { s - b } = 3Δsc\frac { 3 \Delta } { s - c } =(say)

̃ s – a = k, s – b = 2k, s – c = 3k

̃ 3s – (a + b + c) = 6k ̃ s = 6k

̃ = = = k

So, that a2 = b2 + c2

DABC is right angled D, ĐA = 900, since D is mid point of

BC

AD = DC (radius of circum circle)

̃ ĐDAC = C ̃ ĐADC = 1800 – 2C

̃ cos ĐADC = cos(1800 – 2C) = –cos2C

= – (2 cos2C – 1) = 1 – 2cos2C

= 1 – 2 × 1625\frac { 16 } { 25 } = 725\frac { - 7 } { 25 }[From D ABC cos

C = ].