Solveeit Logo

Question

Question: If in triangle ABC, r<sub>1</sub> = 2r<sub>2</sub>= 3r<sub>3</sub>, D is the middle point of BC. The...

If in triangle ABC, r1 = 2r2= 3r3, D is the middle point of BC. Then cos Đ ADC is equal to-

A

725\frac { 7 } { 25 }

B

725\frac { 7 } { 25 }

C

2425\frac { 24 } { 25 }

D

2425\frac { 24 } { 25 }

Answer

725\frac { 7 } { 25 }

Explanation

Solution

r1 = 2r2= 3r3

̃ Δsa\frac { \Delta } { s - a } = = 3Δsc\frac { 3 \Delta } { s - c } = (say)

Then s – a = k, s – b = 2k, s – c = 3k

̃ 3s – (a + b + c) = 6k ̃ s = 6k

̃ = = = k

So that a2 = b2 + c2

̃ ABC is a right angle triangle with A = 900, since D is the

middle point of BC,

AD = DC (radius of the circumcircle)

̃ Đ DAC = C

̃ Đ ADC = 1800 – 2C

̃ cos Đ ADC = cos (1800 – 2C) = – cos 2C

= – [2 cos2C –1] = 1– 2 cos2C

= 1– 2 × 1625\frac { 16 } { 25 }= – 725\frac { 7 } { 25 }