Solveeit Logo

Question

Question: If in triangle ABC, \[a=\left( 1+\sqrt{3} \right)cm\], \(b=2\text{ }cm\) and \(\angle C={{60}^{{}^\c...

If in triangle ABC, a=(1+3)cma=\left( 1+\sqrt{3} \right)cm, b=2 cmb=2\text{ }cm and C=60\angle C={{60}^{{}^\circ }}, find the other two angles and third side.

Explanation

Solution

Hint:We will use law of cosines to find the third side of the ΔABC\Delta ABC, that is c2=a2+b22abcos(c){{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos \left( c \right) and then we will use sine formula to find the other two angles of the triangle asina=bsinb=csinc\dfrac{a}{\sin a}=\dfrac{b}{\sin b}=\dfrac{c}{\sin c}.

Complete step-by-step answer:
It is given in the question that ABC is a triangle with sides a=(1+3)cma=\left( 1+\sqrt{3} \right)cm, b=2 cmb=2\text{ }cm and C=60\angle C={{60}^{{}^\circ }} then we have to find the other two angles and third side of the triangle.
The law of cosines say that is ABC is a triangle as follows

then c2=a2+b22abcos(c){{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos \left( c \right).
Now, we have a=(1+3)cma=\left( 1+\sqrt{3} \right)cm, b=2 cmb=2\text{ }cm and C=60\angle C={{60}^{{}^\circ }}, therefore putting the values in the cosine formula, we get c2=(1+3)2+222(1+3)(2)cos(60){{c}^{2}}={{\left( 1+\sqrt{3} \right)}^{2}}+{{2}^{2}}-2\left( 1+\sqrt{3} \right)\left( 2 \right)\cos \left( {{60}^{{}^\circ }} \right)
Using the general formula of (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and putting the value cos60=12\cos {{60}^{{}^\circ }}=\dfrac{1}{2} we get,
c2=1+3+23+4(2+23)(2)×12{{c}^{2}}=1+3+2\sqrt{3}+4-\left( 2+2\sqrt{3} \right)\left( 2 \right)\times \dfrac{1}{2}, solving further,
c2=8+23223(2)×12{{c}^{2}}=8+2\sqrt{3}-2-2\sqrt{3}\left( 2 \right)\times \dfrac{1}{2}, simplifying further, we get,
c2=8+23223{{c}^{2}}=8+2\sqrt{3}-2-2\sqrt{3} or
c2=6{{c}^{2}}=6.
Thus c=6c=\sqrt{6} is the third side of the given triangle ABC.
Now, by using the sine formula, we will find the other two angles A and B\angle A\text{ }and\text{ }\angle B of triangle ABC. According to sine formula
asina=bsinb=csinc\dfrac{a}{\sin a}=\dfrac{b}{\sin b}=\dfrac{c}{\sin c}. We have a=(1+3)cma=\left( 1+\sqrt{3} \right)cm, b=2 cmb=2\text{ }cm and C=60\angle C={{60}^{{}^\circ }}, also c=6c=\sqrt{6}. Putting all the values in the sine formula, we get
1+3sina=2sinb=6sin60\dfrac{1+\sqrt{3}}{\sin a}=\dfrac{2}{\sin b}=\dfrac{\sqrt{6}}{\sin 60}.
Now, for finding the value of angle B, we will equate the following ratio 2sinb=6sin60\dfrac{2}{\sin b}=\dfrac{\sqrt{6}}{\sin 60}. Therefore on solving this and using the value of sin60=32\sin 60=\dfrac{\sqrt{3}}{2}, we get,
sinb=2sin606=2×326\sin b=\dfrac{2\sin 60}{\sqrt{6}}=\dfrac{2\times \dfrac{\sqrt{3}}{2}}{\sqrt{6}} , solving further, we get,
sinb=36=12\sin b=\dfrac{\sqrt{3}}{\sqrt{6}}=\dfrac{1}{\sqrt{2}}. Now, we know that sin45=12\sin {{45}^{{}^\circ }}=\dfrac{1}{\sqrt{2}}, therefore, on comparing we get B=45\angle B={{45}^{{}^\circ }}.
Now, we know that sum of all angles of a triangle is 180{{180}^{{}^\circ }}, that is, A+B+C=180\angle A+\angle B+\angle C={{180}^{{}^\circ }}, therefore putting the values , we get
A+45+60=180\angle A+{{45}^{{}^\circ }}+{{60}^{{}^\circ }}={{180}^{{}^\circ }}
A=1806045=75\angle A={{180}^{{}^\circ }}-{{60}^{{}^\circ }}-{{45}^{{}^\circ }}={{75}^{{}^\circ }}.
Thus, A=75\angle A={{75}^{{}^\circ }}.
Therefore, the other two angles of ΔABC\Delta ABC are A=75\angle A={{75}^{{}^\circ }} and B=45\angle B={{45}^{{}^\circ }} also the length of third side is equal to c=6c=\sqrt{6}cm.

Note: Many students do not know about cosine formula and how to use it in mathematical problems. Also many of them do not remember this as a result they may skip such questions in examination. For remembering this we can take help of pythagoras theorem is pythagoras theorem also seem similar to cosine formula: Pythagoras theorem: a2+b2=c2{{a}^{2}}+{{b}^{2}}={{c}^{2}} and cosine formula: c2=a2+b22abcos(c){{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos \left( c \right), only an extra term 2abcosc2ab\cos c comes. Also, angle A can be calculated in a similar way as we calculated angle B by equating the necessary ratios.