Solveeit Logo

Question

Question: If in the expression of \[{{\left( \dfrac{1}{x}+x\tan x \right)}^{5}}\], the ratio of 4th term to th...

If in the expression of (1x+xtanx)5{{\left( \dfrac{1}{x}+x\tan x \right)}^{5}}, the ratio of 4th term to the second term is 227π4\dfrac{2}{27}{{\pi }^{4}}, then the value of x can be:
(a) π6\dfrac{-\pi }{6}
(b) π3\dfrac{-\pi }{3}
(c) π3\dfrac{\pi }{3}
(d) π12\dfrac{\pi }{12}

Explanation

Solution

Hint:First of all use the formula for the general term as Tr+1=nCrxnryr{{T}_{r+1}}=n{{C}_{r}}{{x}^{n-r}}{{y}^{r}} by using r = 1 and r = 3 for the second and fourth term respectively. Now, equate the ratio of the fourth term and the second term to 227π4\dfrac{2}{27}{{\pi }^{4}} and get an equation. In this equation, substitute the options and check which satisfies the equation.

Complete step-by-step answer:
We are given that in the expression of (1x+xtanx)5{{\left( \dfrac{1}{x}+x\tan x \right)}^{5}}, the ratio of 4th term to the second term is 227π4\dfrac{2}{27}{{\pi }^{4}}. We have to find the value of x. Let us take the expression given in the question.
E=(1x+xtanx)5E={{\left( \dfrac{1}{x}+x\tan x \right)}^{5}}
We know that the general term as (r + 1)th term in the expression of (x+y)n{{\left( x+y \right)}^{n}} is given by Tr+1=nCrxnryr{{T}_{r+1}}=n{{C}_{r}}{{x}^{n-r}}{{y}^{r}}. So, by using this, we get the general term in the expansion of the above expression as,
Tr+1=5Cr(1x)5r(xtanx)r....(i){{T}_{r+1}}=5{{C}_{r}}{{\left( \dfrac{1}{x} \right)}^{5-r}}{{\left( x\tan x \right)}^{r}}....\left( i \right)
By substituting the value of r = 1 in equation (i), we get, the second term in the expansion as
T1+1=T2=5C1(1x)51(xtanx)1{{T}_{1+1}}={{T}_{2}}=5{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5-1}}{{\left( x\tan x \right)}^{1}}
T2=5C1(1x)4(xtanx){{T}_{2}}=5{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{4}}\left( x\tan x \right)
T2=5C1tanxx3....(ii){{T}_{2}}=\dfrac{5{{C}_{1}}\tan x}{{{x}^{3}}}....\left( ii \right)
By substituting the value of r = 3 in equation (i), we get, the fourth term in the expansion as,
T3+1=T4=5C3(1x)53(xtanx)3{{T}_{3+1}}={{T}_{4}}=5{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{5-3}}{{\left( x\tan x \right)}^{3}}
T4=5C3(1x)2(xtanx)3{{T}_{4}}=5{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( x\tan x \right)}^{3}}
T4=5C3x3(tanx)3x2{{T}_{4}}=\dfrac{5{{C}_{3}}{{x}^{3}}{{\left( \tan x \right)}^{3}}}{{{x}^{2}}}
T4=5C3x(tanx)3....(iii){{T}_{4}}=5{{C}_{3}}x{{\left( \tan x \right)}^{3}}....\left( iii \right)
By dividing equation (iii) with equation (ii), we get,
4th term2nd term=5C3x(tanx)35C1tanxx3.....(iv)\dfrac{\text{4th term}}{\text{2nd term}}=\dfrac{5{{C}_{3}}x{{\left( \tan x \right)}^{3}}}{\dfrac{5{{C}_{1}}\tan x}{{{x}^{3}}}}.....\left( iv \right)
We are given that,
4th term2nd term=227π4....(v)\dfrac{\text{4th term}}{\text{2nd term}}=\dfrac{2}{27}{{\pi }^{4}}....\left( v \right)
So, from equation (iv) and (v), we get,
5C3x(tanx)35C1tanxx3=227π4\dfrac{5{{C}_{3}}x{{\left( \tan x \right)}^{3}}}{\dfrac{5{{C}_{1}}\tan x}{{{x}^{3}}}}=\dfrac{2}{27}{{\pi }^{4}}
We know that,
nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}
So, we get,
5!3!2!(tanx)2x45!1!4!=227π4\dfrac{\dfrac{5!}{3!2!}{{\left( \tan x \right)}^{2}}{{x}^{4}}}{\dfrac{5!}{1!4!}}=\dfrac{2}{27}{{\pi }^{4}}
=4!3!2!(tanx)2x4=227π4=\dfrac{4!}{3!2!}{{\left( \tan x \right)}^{2}}{{x}^{4}}=\dfrac{2}{27}{{\pi }^{4}}
=4×3!3!2!(tanx)2x4=227π4=\dfrac{4\times 3!}{3!2!}{{\left( \tan x \right)}^{2}}{{x}^{4}}=\dfrac{2}{27}{{\pi }^{4}}
=2(tanx)2x4=227π4=2{{\left( \tan x \right)}^{2}}{{x}^{4}}=\dfrac{2}{27}{{\pi }^{4}}
=(tanx)2x4=π427....(vi)={{\left( \tan x \right)}^{2}}{{x}^{4}}=\dfrac{{{\pi }^{4}}}{27}....\left( vi \right)
As the above equation is not a standard equation, so now, we will use the options.
(a) By substituting x=π6x=\dfrac{-\pi }{6} in equation (vi), we get,
=[tan(π6)]2(π6)4=π427={{\left[ \tan \left( \dfrac{-\pi }{6} \right) \right]}^{2}}{{\left( \dfrac{-\pi }{6} \right)}^{4}}=\dfrac{{{\pi }^{4}}}{27}
We know that tan(π6)=13\tan \left( \dfrac{-\pi }{6} \right)=\dfrac{-1}{\sqrt{3}}, so we get,
(13)2(π6)4=π427{{\left( \dfrac{-1}{\sqrt{3}} \right)}^{2}}{{\left( \dfrac{\pi }{6} \right)}^{4}}=\dfrac{{{\pi }^{4}}}{27}
π43888π427\dfrac{{{\pi }^{4}}}{3888}\ne \dfrac{{{\pi }^{4}}}{27}
LHSRHSLHS\ne RHS
So, this value of x is not correct.
(b) By substituting x=π3x=\dfrac{-\pi }{3} in equation (vi), we get,
=[tan(π3)]2(π3)4=π427={{\left[ \tan \left( \dfrac{-\pi }{3} \right) \right]}^{2}}{{\left( \dfrac{-\pi }{3} \right)}^{4}}=\dfrac{{{\pi }^{4}}}{27}
We know that tan(π3)=3\tan \left( \dfrac{-\pi }{3} \right)=\sqrt{3}, so we get,
(3)2(π3)4=π427{{\left( -\sqrt{3} \right)}^{2}}{{\left( \dfrac{\pi }{3} \right)}^{4}}=\dfrac{{{\pi }^{4}}}{27}
3×π481=π4273\times \dfrac{{{\pi }^{4}}}{81}=\dfrac{{{\pi }^{4}}}{27}
π427=π427\dfrac{{{\pi }^{4}}}{27}=\dfrac{{{\pi }^{4}}}{27}
LHS=RHSLHS=RHS
So, this value of x is correct.
(c) By substituting x=π3x=\dfrac{\pi }{3} in equation (vi), we get,
=[tan(π3)]2(π3)4=π427={{\left[ \tan \left( \dfrac{\pi }{3} \right) \right]}^{2}}{{\left( \dfrac{\pi }{3} \right)}^{4}}=\dfrac{{{\pi }^{4}}}{27}
We know that tan(π3)=3\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}, so we get,
(3)2(π3)4=π427{{\left( \sqrt{3} \right)}^{2}}{{\left( \dfrac{\pi }{3} \right)}^{4}}=\dfrac{{{\pi }^{4}}}{27}
3×π481=π4273\times \dfrac{{{\pi }^{4}}}{81}=\dfrac{{{\pi }^{4}}}{27}
π427=π427\dfrac{{{\pi }^{4}}}{27}=\dfrac{{{\pi }^{4}}}{27}
LHS=RHSLHS=RHS
So, this value of x is correct.
(d) By substituting x=π12x=\dfrac{\pi }{12} in equation (vi), we get,
=[tan(π12)]2(π12)4=π427={{\left[ \tan \left( \dfrac{\pi }{12} \right) \right]}^{2}}{{\left( \dfrac{\pi }{12} \right)}^{4}}=\dfrac{{{\pi }^{4}}}{27}
We know that tan(π12)=(23)\tan \left( \dfrac{\pi }{12} \right)=\left( 2-\sqrt{3} \right), so we get,
(23)2(π12)4=π427{{\left( 2-\sqrt{3} \right)}^{2}}{{\left( \dfrac{\pi }{12} \right)}^{4}}=\dfrac{{{\pi }^{4}}}{27}
(4+343)π4124=π427\left( 4+3-4\sqrt{3} \right)\dfrac{{{\pi }^{4}}}{{{12}^{4}}}=\dfrac{{{\pi }^{4}}}{27}
LHSRHSLHS\ne RHS
So, this value of x is not correct.
Hence, option (b) and (c) are the correct answers.

Note: Students must note that in insolvable questions or equations, we use the options and check if it satisfies the equation that is LHS = RHS or not. Also in this question, many students make this mistake of taking r = 2 and r = 4 for finding second and fourth term which is wrong because we know the formula of (Tr+1)th\left( {{T}_{r+1}} \right)th term and not (Tr)th\left( {{T}_{r}} \right)th term. So, for the second term, we should use r = 1 to make Tr+1=T2{{T}_{r+1}}={{T}_{2}} , and for the fourth term, we should use r = 3 to make Tr+1=T4{{T}_{r+1}}={{T}_{4}} and so on.