Solveeit Logo

Question

Question: If in the expansion of $(1 + x)^m(1 - x)^n$, the coefficients of x and $x^2$ are 2 and -3, respectiv...

If in the expansion of (1+x)m(1x)n(1 + x)^m(1 - x)^n, the coefficients of x and x2x^2 are 2 and -3, respectively then 2mn2m - n equals

A

8

B

6

C

4

D

2

Answer

8

Explanation

Solution

To find the value of 2mn2m - n, we first need to determine the values of mm and nn using the given information about the coefficients of xx and x2x^2 in the expansion of (1+x)m(1x)n(1 + x)^m(1 - x)^n.

The binomial expansions are: (1+x)m=1+mx+m(m1)2!x2+O(x3)(1 + x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + O(x^3) (1x)n=1nx+n(n1)2!x2+O(x3)(1 - x)^n = 1 - nx + \frac{n(n-1)}{2!}x^2 + O(x^3)

Now, let's multiply these two series to find the terms up to x2x^2: (1+x)m(1x)n=(1+mx+m(m1)2x2+)(1nx+n(n1)2x2+)(1 + x)^m(1 - x)^n = \left(1 + mx + \frac{m(m-1)}{2}x^2 + \dots\right) \left(1 - nx + \frac{n(n-1)}{2}x^2 + \dots\right)

To find the coefficient of xx: Coefficient of x=(1)(n)+(m)(1)=mnx = (1)(-n) + (m)(1) = m - n

Given that the coefficient of xx is 2, we have: mn=2(Equation 1)m - n = 2 \quad \text{(Equation 1)}

To find the coefficient of x2x^2: Coefficient of x2=(1)(n(n1)2)+(mx)(nx)+(m(m1)2)(1)x^2 = (1)\left(\frac{n(n-1)}{2}\right) + (mx)(-nx) + \left(\frac{m(m-1)}{2}\right)(1) Coefficient of x2=n(n1)2mn+m(m1)2x^2 = \frac{n(n-1)}{2} - mn + \frac{m(m-1)}{2}

Given that the coefficient of x2x^2 is -3, we have: n(n1)2mn+m(m1)2=3\frac{n(n-1)}{2} - mn + \frac{m(m-1)}{2} = -3 Multiply the entire equation by 2 to clear the denominators: n(n1)2mn+m(m1)=6n(n-1) - 2mn + m(m-1) = -6 n2n2mn+m2m=6n^2 - n - 2mn + m^2 - m = -6

Rearrange the terms to group m2,2mn,n2m^2, -2mn, n^2: (m22mn+n2)(m+n)=6(m^2 - 2mn + n^2) - (m + n) = -6 This simplifies to: (mn)2(m+n)=6(m-n)^2 - (m+n) = -6

Substitute the value of (mn)(m-n) from Equation 1 into this equation: (2)2(m+n)=6(2)^2 - (m+n) = -6 4(m+n)=64 - (m+n) = -6 m+n=4+6m+n = 4 + 6 m+n=10(Equation 2)m+n = 10 \quad \text{(Equation 2)}

Now we have a system of two linear equations:

  1. mn=2m - n = 2
  2. m+n=10m + n = 10

Add Equation 1 and Equation 2: (mn)+(m+n)=2+10(m - n) + (m + n) = 2 + 10 2m=122m = 12 m=6m = 6

Substitute the value of m=6m=6 into Equation 1: 6n=26 - n = 2 n=62n = 6 - 2 n=4n = 4

Finally, we need to calculate 2mn2m - n: 2mn=2(6)42m - n = 2(6) - 4 2mn=1242m - n = 12 - 4 2mn=82m - n = 8