Solveeit Logo

Question

Question: If in the determinant\(\Delta = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}...

If in the determinantΔ=a1b1c1a2b2c2a3b3c3\Delta = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right|, A1,B1,C1A_{1},B_{1},C_{1} etc. be the co-factors of a1,b1,c1a_{1},b_{1},c_{1}etc., then which of the following relations is incorrect.

A

a1A1+b1B1+c1C1=Δa_{1}A_{1} + b_{1}B_{1} + c_{1}C_{1} = \Delta

B

a2A2+b2B2+c2C2=Δa_{2}A_{2} + b_{2}B_{2} + c_{2}C_{2} = \Delta

C

a3A3+b3B3+c3C3=Δa_{3}A_{3} + b_{3}B_{3} + c_{3}C_{3} = \Delta

D

a1A2+b1B2+c1C2=Δa_{1}A_{2} + b_{1}B_{2} + c_{1}C_{2} = \Delta

Answer

a1A2+b1B2+c1C2=Δa_{1}A_{2} + b_{1}B_{2} + c_{1}C_{2} = \Delta

Explanation

Solution

It is a fundamental concept.